Matches in SemOpenAlex for { <https://semopenalex.org/work/W2245556053> ?p ?o ?g. }
- W2245556053 abstract "A number of researchers have investigated the material properties of human cortical bone and the effects of different parameters such as: tension, compression, age, bone density, direction dependence, regional variation, and rate dependence. Although all of the aforementioned parameters have been investigated, previous studies have focused on the long bones of the body and none have addressed more than two or three of these parameters within a single controlled study. In addition, material property testing of human cortical bone is also desirable to obtain the material properties of a specific body in order to model specific tests conducted with that body. Therefore, there is still a necessity for continued material property testing of the human skeletal system. The purpose of this study was to develop a method for preparing and testing human cortical bone coupons at dynamic rates in both tension and compression to obtain accurate, comprehensive material property data. The methods presented in this paper were developed through 195 practice tests on human tibia cortical bone. A detailed specimen preparation technique was developed to obtain cortical bone test specimens while maintaining proper specimen alignment and hydration. Methods to minimize the effects of bending due to misalignment of the test setup and test specimens were addressed. The use of a slack adapter provided constant strain rates. A strain gage, potentiometer, extensometer, laser vibrometer, and the MTS internal LVDT were evaluated for displacement measurement accuracy under static and dynamic loading. The laser vibrometer, which has nanometer scale accuracy and a high frequency response of 200 kHz, was found to be the best displacement measurement device when testing at dynamic rates. The results of the coupon tests conducted on human tibia cortical bone proved that the specimen preparation and test methods presented in this study are both accurate and precise for determining cortical bone material properties. INTRODUCTION here have been numerous studies that have invested the material properties of human cortical bone and the effects of different parameters such as: tension, compression, age, bone mineral density, direction dependence, regional variation, and rate dependence. Dempster (1952) presented one of the first studies using human femur and tibia bones. This study conducted tension and compression tests in both the axial and lateral directions, but only quasi-static loading rates were tested. Therefore, viscoelastic effects needed for application to the automobile safety field were not investigated. Evans (1956) performed tests on human T Injury Biomechanics Research 32 femur, tibia, and fibula cortical bone specimens in tension and looked at the effects of regional variation. However, like Dempster (1952), these tests were conducted at quasi-static rates and did not examine viscoelastic effects. McElhaney (1966) presented tests on human femur bones in compression, but did not look at any tests in tension. Reilly (1975) performed tests on human femur specimens in tension and compression and in three loading directions. However, this study was limited also to only quasi-static loading rates and did not perform high-rate loading tests. Finally, Saha (1974) conducted dynamic tests but only in the tension and axial directions. Although all of the effects of the aforementioned parameters have been investigated, previous studies have focused on the long bones of the body and none have addressed more than two or three of these parameters within a single controlled study. In addition, material property testing of human cortical bone is also desirable to obtain the properties of a specific body in order to model specific tests conducted with that body. Therefore, there is still a necessity for continued material property testing of the human skeletal system. The purpose of this study was to develop a method for preparing and testing human cortical bone coupons at dynamic rates in both tension and compression to obtain accurate, comprehensive material property data. METHODS The methods for dynamic material testing of human cortical bone presented in this paper were developed through 195 practice tests on human tibia cortical bone, and are presented in four sections: specimen preparation, detailing proper alignment and hydration issues; alignment of test setup, detailing specimen and grip centerline conformance; slack adapter, detailing advantages and operation; and evaluation of displacement measurement devices, detailing advantages and disadvantages of each. Specimen Preparation In order to conduct material property testing on human cortical bone, the bone coupon must first be machined into a testable geometry. This was done through numerous steps of detailed preparation. First, an oscillating bone saw was used to make two cuts to separate the tibia from the body (Figure 1)." @default.
- W2245556053 created "2016-06-24" @default.
- W2245556053 creator A5002823950 @default.
- W2245556053 creator A5010507689 @default.
- W2245556053 creator A5016178087 @default.
- W2245556053 creator A5017319188 @default.
- W2245556053 creator A5020809730 @default.
- W2245556053 creator A5029806713 @default.
- W2245556053 creator A5043770637 @default.
- W2245556053 creator A5070482450 @default.
- W2245556053 creator A5076178415 @default.
- W2245556053 date "2004-01-01" @default.
- W2245556053 modified "2023-09-27" @default.
- W2245556053 title "Methods for dynamic material testing of human cortical bone specimens" @default.
- W2245556053 cites W1596528751 @default.
- W2245556053 cites W1901463649 @default.
- W2245556053 cites W1961317838 @default.
- W2245556053 cites W1974725047 @default.
- W2245556053 cites W1979227027 @default.
- W2245556053 cites W1990013292 @default.
- W2245556053 cites W1991848851 @default.
- W2245556053 cites W1992497472 @default.
- W2245556053 cites W1993090130 @default.
- W2245556053 cites W2015906666 @default.
- W2245556053 cites W2016319206 @default.
- W2245556053 cites W2018838831 @default.
- W2245556053 cites W2043036039 @default.
- W2245556053 cites W2066423617 @default.
- W2245556053 cites W2078742034 @default.
- W2245556053 cites W2093861326 @default.
- W2245556053 cites W2093990518 @default.
- W2245556053 cites W2146259535 @default.
- W2245556053 cites W2174440256 @default.
- W2245556053 cites W2256078822 @default.
- W2245556053 cites W2324392878 @default.
- W2245556053 cites W332929019 @default.
- W2245556053 cites W775833168 @default.
- W2245556053 hasPublicationYear "2004" @default.
- W2245556053 type Work @default.
- W2245556053 sameAs 2245556053 @default.
- W2245556053 citedByCount "0" @default.
- W2245556053 crossrefType "journal-article" @default.
- W2245556053 hasAuthorship W2245556053A5002823950 @default.
- W2245556053 hasAuthorship W2245556053A5010507689 @default.
- W2245556053 hasAuthorship W2245556053A5016178087 @default.
- W2245556053 hasAuthorship W2245556053A5017319188 @default.
- W2245556053 hasAuthorship W2245556053A5020809730 @default.
- W2245556053 hasAuthorship W2245556053A5029806713 @default.
- W2245556053 hasAuthorship W2245556053A5043770637 @default.
- W2245556053 hasAuthorship W2245556053A5070482450 @default.
- W2245556053 hasAuthorship W2245556053A5076178415 @default.
- W2245556053 hasConcept C105702510 @default.
- W2245556053 hasConcept C127413603 @default.
- W2245556053 hasConcept C136229726 @default.
- W2245556053 hasConcept C159985019 @default.
- W2245556053 hasConcept C180016635 @default.
- W2245556053 hasConcept C185592680 @default.
- W2245556053 hasConcept C185885794 @default.
- W2245556053 hasConcept C186068551 @default.
- W2245556053 hasConcept C192562407 @default.
- W2245556053 hasConcept C202751555 @default.
- W2245556053 hasConcept C2781451080 @default.
- W2245556053 hasConcept C2993373878 @default.
- W2245556053 hasConcept C31555180 @default.
- W2245556053 hasConcept C49040817 @default.
- W2245556053 hasConcept C55493867 @default.
- W2245556053 hasConcept C60584519 @default.
- W2245556053 hasConcept C6260449 @default.
- W2245556053 hasConcept C71924100 @default.
- W2245556053 hasConcept C927094 @default.
- W2245556053 hasConcept C96199931 @default.
- W2245556053 hasConceptScore W2245556053C105702510 @default.
- W2245556053 hasConceptScore W2245556053C127413603 @default.
- W2245556053 hasConceptScore W2245556053C136229726 @default.
- W2245556053 hasConceptScore W2245556053C159985019 @default.
- W2245556053 hasConceptScore W2245556053C180016635 @default.
- W2245556053 hasConceptScore W2245556053C185592680 @default.
- W2245556053 hasConceptScore W2245556053C185885794 @default.
- W2245556053 hasConceptScore W2245556053C186068551 @default.
- W2245556053 hasConceptScore W2245556053C192562407 @default.
- W2245556053 hasConceptScore W2245556053C202751555 @default.
- W2245556053 hasConceptScore W2245556053C2781451080 @default.
- W2245556053 hasConceptScore W2245556053C2993373878 @default.
- W2245556053 hasConceptScore W2245556053C31555180 @default.
- W2245556053 hasConceptScore W2245556053C49040817 @default.
- W2245556053 hasConceptScore W2245556053C55493867 @default.
- W2245556053 hasConceptScore W2245556053C60584519 @default.
- W2245556053 hasConceptScore W2245556053C6260449 @default.
- W2245556053 hasConceptScore W2245556053C71924100 @default.
- W2245556053 hasConceptScore W2245556053C927094 @default.
- W2245556053 hasConceptScore W2245556053C96199931 @default.
- W2245556053 hasLocation W22455560531 @default.
- W2245556053 hasOpenAccess W2245556053 @default.
- W2245556053 hasPrimaryLocation W22455560531 @default.
- W2245556053 hasRelatedWork W1907105616 @default.
- W2245556053 hasRelatedWork W1971692302 @default.
- W2245556053 hasRelatedWork W1977752850 @default.
- W2245556053 hasRelatedWork W1977810163 @default.
- W2245556053 hasRelatedWork W1999576872 @default.
- W2245556053 hasRelatedWork W2086344737 @default.