Matches in SemOpenAlex for { <https://semopenalex.org/work/W2246542009> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2246542009 endingPage "56" @default.
- W2246542009 startingPage "31" @default.
- W2246542009 abstract "The aim of this study is the selection of the most relevant features of electroencephalograms (EEG) for classification and clustering of preictal states. First, a sum of 312 time series features were computed on consecutive segments of preictal EEG (simple statistical measures, linear and nonlinear measures), where some of them regard different method specific parameters. The efficiency of three methods for feature selection was assessed, i.e., the Forward Sequential Selection (FSS), Support Vector Machines with Recursive Feature Elimination (SVM-RFE) and a MI filter. The classification was applied first to 1000 realizations of simulated data from the Mackey–Glass system at different high dimensional chaotic regimes, and next to 12 scalp early and late preictal EEG recordings of different epileptic patients (about 3 h and half an hour before the seizure onset, respectively). The optimal feature subsets selected by the three feature selection strategies for the same classification problems were found very often to have common features. Based on these feature subsets, classification with k-means partitioning as well as SVM was assessed on test sets of EEG from the same recordings. Feature subsets for each channel and episode or only episode did not classify on the test set as well as a global feature subset of a sufficiently large number of the most frequent features over all channels and episodes. We concluded that a global feature subset of 16 most frequent features can play the role of a biomarker and distinguish early and late preictal states." @default.
- W2246542009 created "2016-06-24" @default.
- W2246542009 creator A5043840277 @default.
- W2246542009 creator A5068872573 @default.
- W2246542009 date "2012-01-01" @default.
- W2246542009 modified "2023-10-17" @default.
- W2246542009 title "EEG Features as Biomarkers for Discrimination of Preictal States" @default.
- W2246542009 cites W1515312406 @default.
- W2246542009 cites W1521627811 @default.
- W2246542009 cites W1529971990 @default.
- W2246542009 cites W1562827635 @default.
- W2246542009 cites W1918043561 @default.
- W2246542009 cites W1967301842 @default.
- W2246542009 cites W1994233698 @default.
- W2246542009 cites W2013452327 @default.
- W2246542009 cites W2026416709 @default.
- W2246542009 cites W2029401646 @default.
- W2246542009 cites W2031401814 @default.
- W2246542009 cites W2038208373 @default.
- W2246542009 cites W2068951112 @default.
- W2246542009 cites W2074972084 @default.
- W2246542009 cites W2081681829 @default.
- W2246542009 cites W2082363360 @default.
- W2246542009 cites W2094631910 @default.
- W2246542009 cites W2097747115 @default.
- W2246542009 cites W2102264602 @default.
- W2246542009 cites W2106375138 @default.
- W2246542009 cites W2117059686 @default.
- W2246542009 cites W2119387367 @default.
- W2246542009 cites W2132240828 @default.
- W2246542009 cites W2135190479 @default.
- W2246542009 cites W2143426320 @default.
- W2246542009 cites W2148633389 @default.
- W2246542009 cites W2150147158 @default.
- W2246542009 cites W2158585918 @default.
- W2246542009 cites W2168947526 @default.
- W2246542009 doi "https://doi.org/10.1007/978-1-4614-2107-8_3" @default.
- W2246542009 hasPublicationYear "2012" @default.
- W2246542009 type Work @default.
- W2246542009 sameAs 2246542009 @default.
- W2246542009 citedByCount "2" @default.
- W2246542009 countsByYear W22465420092013 @default.
- W2246542009 countsByYear W22465420092015 @default.
- W2246542009 crossrefType "book-chapter" @default.
- W2246542009 hasAuthorship W2246542009A5043840277 @default.
- W2246542009 hasAuthorship W2246542009A5068872573 @default.
- W2246542009 hasConcept C15744967 @default.
- W2246542009 hasConcept C169760540 @default.
- W2246542009 hasConcept C522805319 @default.
- W2246542009 hasConcept C548259974 @default.
- W2246542009 hasConcept C71924100 @default.
- W2246542009 hasConceptScore W2246542009C15744967 @default.
- W2246542009 hasConceptScore W2246542009C169760540 @default.
- W2246542009 hasConceptScore W2246542009C522805319 @default.
- W2246542009 hasConceptScore W2246542009C548259974 @default.
- W2246542009 hasConceptScore W2246542009C71924100 @default.
- W2246542009 hasLocation W22465420091 @default.
- W2246542009 hasOpenAccess W2246542009 @default.
- W2246542009 hasPrimaryLocation W22465420091 @default.
- W2246542009 hasRelatedWork W1969054594 @default.
- W2246542009 hasRelatedWork W1971192340 @default.
- W2246542009 hasRelatedWork W1979209510 @default.
- W2246542009 hasRelatedWork W2004864560 @default.
- W2246542009 hasRelatedWork W2045869251 @default.
- W2246542009 hasRelatedWork W2046994291 @default.
- W2246542009 hasRelatedWork W2059575388 @default.
- W2246542009 hasRelatedWork W2187044451 @default.
- W2246542009 hasRelatedWork W2462205337 @default.
- W2246542009 hasRelatedWork W4225137809 @default.
- W2246542009 isParatext "false" @default.
- W2246542009 isRetracted "false" @default.
- W2246542009 magId "2246542009" @default.
- W2246542009 workType "book-chapter" @default.