Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247017865> ?p ?o ?g. }
- W2247017865 endingPage "135" @default.
- W2247017865 startingPage "135" @default.
- W2247017865 abstract "A key step in many statistical learning methods used in machine learning involves solving a convex optimization problem containing one or more hyper-parameters that must be selected by the users. While cross validation is a commonly employed and widely accepted method for selecting these parameters, its implementation by a grid-search procedure in the parameter space effectively limits the desirable number of hyper-parameters in a model, due to the combinatorial explosion of grid points in high dimensions. A novel paradigm based on bilevel optimization approach is proposed and gives rise to a unifying framework within which issues such as model selection can be addressed.The machine learning problem is formulated as a bilevel program—a mathematical program that has constraints which are functions of optimal solutions of another mathematical program called the inner-level program. The bilevel program is transformed to an equivalent mathematical program with equilibrium constraints (MPEC). Two alternative bilevel optimization algorithms are developed to optimize the MPEC and provide a systematic search of the hyper-parameters. In the first approach, the equilibrium constraints of the MPEC are relaxed to form a nonlinear program with linear objective and non-convex quadratic inequality constraints, which is then solved using a general purpose nonlinear programming solver. In the second approach, the equilibrium constraints are treated as penalty terms in the objective, and the resulting non-convex quadratic program with linear constraints is solved using a successive linearization algorithm. The flexibility of the bilevel approach to deal with multiple hyper-parameters, makes it powerful approach to problems such as parameter and feature selection (model selection). In this thesis, three problems are studied: model selection for support vector (SV) classification, model selection for SV regression and missing value-imputation for SV regression. Extensive computational results establish that both algorithmic approaches find solutions that generalize as well or better than conventional approaches and are much more computationally efficient." @default.
- W2247017865 created "2016-06-24" @default.
- W2247017865 creator A5048876983 @default.
- W2247017865 creator A5049799303 @default.
- W2247017865 date "2008-01-01" @default.
- W2247017865 modified "2023-09-25" @default.
- W2247017865 title "A bilevel optimization approach to machine learning" @default.
- W2247017865 cites W1499399028 @default.
- W2247017865 cites W1503428021 @default.
- W2247017865 cites W1510073064 @default.
- W2247017865 cites W1512098439 @default.
- W2247017865 cites W1526146785 @default.
- W2247017865 cites W1550443206 @default.
- W2247017865 cites W1588628884 @default.
- W2247017865 cites W1680392829 @default.
- W2247017865 cites W17229534 @default.
- W2247017865 cites W1943383135 @default.
- W2247017865 cites W1964357740 @default.
- W2247017865 cites W1966095601 @default.
- W2247017865 cites W1976886395 @default.
- W2247017865 cites W1978108972 @default.
- W2247017865 cites W1990381576 @default.
- W2247017865 cites W1996692737 @default.
- W2247017865 cites W1997138910 @default.
- W2247017865 cites W2005148680 @default.
- W2247017865 cites W2009901815 @default.
- W2247017865 cites W2015893008 @default.
- W2247017865 cites W2017337590 @default.
- W2247017865 cites W2031264011 @default.
- W2247017865 cites W2034039293 @default.
- W2247017865 cites W2035720976 @default.
- W2247017865 cites W2037678919 @default.
- W2247017865 cites W2043851564 @default.
- W2247017865 cites W2044758663 @default.
- W2247017865 cites W2048799772 @default.
- W2247017865 cites W2049633694 @default.
- W2247017865 cites W2055586095 @default.
- W2247017865 cites W2057427500 @default.
- W2247017865 cites W2065887373 @default.
- W2247017865 cites W2078080374 @default.
- W2247017865 cites W2082988498 @default.
- W2247017865 cites W2087347434 @default.
- W2247017865 cites W2087472326 @default.
- W2247017865 cites W2090770774 @default.
- W2247017865 cites W2093663561 @default.
- W2247017865 cites W2098954338 @default.
- W2247017865 cites W2100358124 @default.
- W2247017865 cites W2105497548 @default.
- W2247017865 cites W2106292145 @default.
- W2247017865 cites W2107968230 @default.
- W2247017865 cites W2114933215 @default.
- W2247017865 cites W2115729631 @default.
- W2247017865 cites W2118502261 @default.
- W2247017865 cites W2119479037 @default.
- W2247017865 cites W2119821739 @default.
- W2247017865 cites W2122825543 @default.
- W2247017865 cites W2128255043 @default.
- W2247017865 cites W2129377018 @default.
- W2247017865 cites W2130698119 @default.
- W2247017865 cites W2133314983 @default.
- W2247017865 cites W2133958955 @default.
- W2247017865 cites W2137226992 @default.
- W2247017865 cites W2143104527 @default.
- W2247017865 cites W2143426320 @default.
- W2247017865 cites W2145295623 @default.
- W2247017865 cites W2151902790 @default.
- W2247017865 cites W2155640943 @default.
- W2247017865 cites W2156909104 @default.
- W2247017865 cites W2158001550 @default.
- W2247017865 cites W2166758048 @default.
- W2247017865 cites W2170356051 @default.
- W2247017865 cites W2171126500 @default.
- W2247017865 cites W217831350 @default.
- W2247017865 cites W2254218369 @default.
- W2247017865 cites W2608221418 @default.
- W2247017865 cites W2913340405 @default.
- W2247017865 cites W3150183338 @default.
- W2247017865 cites W49930306 @default.
- W2247017865 cites W2565018890 @default.
- W2247017865 cites W3149294242 @default.
- W2247017865 hasPublicationYear "2008" @default.
- W2247017865 type Work @default.
- W2247017865 sameAs 2247017865 @default.
- W2247017865 citedByCount "5" @default.
- W2247017865 countsByYear W22470178652018 @default.
- W2247017865 countsByYear W22470178652020 @default.
- W2247017865 countsByYear W22470178652021 @default.
- W2247017865 crossrefType "journal-article" @default.
- W2247017865 hasAuthorship W2247017865A5048876983 @default.
- W2247017865 hasAuthorship W2247017865A5049799303 @default.
- W2247017865 hasConcept C105795698 @default.
- W2247017865 hasConcept C11210021 @default.
- W2247017865 hasConcept C121332964 @default.
- W2247017865 hasConcept C126255220 @default.
- W2247017865 hasConcept C137836250 @default.
- W2247017865 hasConcept C158622935 @default.
- W2247017865 hasConcept C187691185 @default.
- W2247017865 hasConcept C2524010 @default.