Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247113309> ?p ?o ?g. }
- W2247113309 endingPage "2714" @default.
- W2247113309 startingPage "2705" @default.
- W2247113309 abstract "Self-assembly of π-conjugate molecules often leads to formation of well-defined nanofibril structures dominated by the columnar π-π stacking between the molecular planes. These nanofibril materials have drawn increasing interest in the research frontiers of nanomaterials and nanotechnology, as the nanofibers demonstrate one-dimensionally enhanced exciton and charge diffusion along the long axis, and present great potential for varying optoelectronic applications, such as sensors, optics, photovoltaics, and photocatalysis. However, poor electrical conductivity remains a technical drawback for these nanomaterials. To address this problem, we have developed a series of nanofiber structures modified with different donor-acceptor (D-A) interfaces that are tunable for maximizing the photoinduced charge separation, thus leading to increase in the electrical conductivity. The D-A interface can be constructed with covalent linker or noncovalent interaction (e.g., hydrophobic interdigitation between alkyl chains). The noncovalent method is generally more flexible for molecular design and solution processing, making it more adaptable to be applied to other fibril nanomaterials such as carbon nanotubes. In this Account, we will discuss our recent discoveries in these research fields, aiming to provide deep insight into the enabling photoconductivity of nanofibril materials, and the dependence on interface structure. The photoconductivity generated with the nanofibril material is proportional to the charge carriers density, which in turn is determined by the kinetics balance of the three competitive charge transfer processes: (1) the photoinduced electron transfer from D to A (also referred to as exciton dissociation), generating majority charge carrier located in the nanofiber; (2) the back electron transfer; and (3) the charge delocalization along the nanofiber mediated by the π-π stacking interaction. The relative rates of these charge transfer processes can be tuned by the molecular structure and nanoscale interface engineering. As a result, maximal photoconductivity can be achieved for different D-A nanofibril composites. The photoconductive nanomaterials thus obtained demonstrate unique features and functions when employed in photochemiresistor sensors, photovoltaics and photocatalysis, all taking advantages of the large, open interface of nanofibril structure. Upon deposition onto a substrate, the intertwined nanofibers form networks with porosity in nanometer scale. The porous structure enables three-dimensional diffusion of molecules (analytes in sensor or reactants in catalysis), facilitating the interfacial chemical interactions. For carbon nanotubes, the completely exposed π-conjugation facilitates the surface modification through π-π stacking in conjunction with D-A interaction. Depending on the electronic energy levels of D and A parts, appropriate band alignment can be achieved, thus producing an electric field across the interface. Presence of such an electric field enhances the charge separation, which may lead to design of new type of photovoltaic system using carbon nanotube composite." @default.
- W2247113309 created "2016-06-24" @default.
- W2247113309 creator A5047177606 @default.
- W2247113309 date "2015-09-28" @default.
- W2247113309 modified "2023-10-06" @default.
- W2247113309 title "Interfacial Donor–Acceptor Engineering of Nanofiber Materials To Achieve Photoconductivity and Applications" @default.
- W2247113309 cites W1963740321 @default.
- W2247113309 cites W1970179957 @default.
- W2247113309 cites W1970983747 @default.
- W2247113309 cites W1978580467 @default.
- W2247113309 cites W1984867939 @default.
- W2247113309 cites W1986117411 @default.
- W2247113309 cites W1986169811 @default.
- W2247113309 cites W1986628723 @default.
- W2247113309 cites W1990774389 @default.
- W2247113309 cites W1991062703 @default.
- W2247113309 cites W1995599430 @default.
- W2247113309 cites W2000456123 @default.
- W2247113309 cites W2011534234 @default.
- W2247113309 cites W2017394444 @default.
- W2247113309 cites W2021010346 @default.
- W2247113309 cites W2024269331 @default.
- W2247113309 cites W2030251017 @default.
- W2247113309 cites W2050367887 @default.
- W2247113309 cites W2052842076 @default.
- W2247113309 cites W2062582985 @default.
- W2247113309 cites W2075535514 @default.
- W2247113309 cites W2079097382 @default.
- W2247113309 cites W2088931383 @default.
- W2247113309 cites W2089596991 @default.
- W2247113309 cites W2133903542 @default.
- W2247113309 cites W2140002597 @default.
- W2247113309 cites W2154439556 @default.
- W2247113309 cites W2158676467 @default.
- W2247113309 cites W2166967910 @default.
- W2247113309 cites W2315169022 @default.
- W2247113309 cites W2316733506 @default.
- W2247113309 cites W2330453275 @default.
- W2247113309 cites W2331908667 @default.
- W2247113309 cites W2764886111 @default.
- W2247113309 doi "https://doi.org/10.1021/acs.accounts.5b00176" @default.
- W2247113309 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26415109" @default.
- W2247113309 hasPublicationYear "2015" @default.
- W2247113309 type Work @default.
- W2247113309 sameAs 2247113309 @default.
- W2247113309 citedByCount "78" @default.
- W2247113309 countsByYear W22471133092016 @default.
- W2247113309 countsByYear W22471133092017 @default.
- W2247113309 countsByYear W22471133092018 @default.
- W2247113309 countsByYear W22471133092019 @default.
- W2247113309 countsByYear W22471133092020 @default.
- W2247113309 countsByYear W22471133092021 @default.
- W2247113309 countsByYear W22471133092022 @default.
- W2247113309 countsByYear W22471133092023 @default.
- W2247113309 crossrefType "journal-article" @default.
- W2247113309 hasAuthorship W2247113309A5047177606 @default.
- W2247113309 hasConcept C104232198 @default.
- W2247113309 hasConcept C121332964 @default.
- W2247113309 hasConcept C138631740 @default.
- W2247113309 hasConcept C159467904 @default.
- W2247113309 hasConcept C171250308 @default.
- W2247113309 hasConcept C17729963 @default.
- W2247113309 hasConcept C185592680 @default.
- W2247113309 hasConcept C192562407 @default.
- W2247113309 hasConcept C201999631 @default.
- W2247113309 hasConcept C26873012 @default.
- W2247113309 hasConcept C2779892579 @default.
- W2247113309 hasConcept C49040817 @default.
- W2247113309 hasConcept C513720949 @default.
- W2247113309 hasConcept C62520636 @default.
- W2247113309 hasConcept C79794668 @default.
- W2247113309 hasConcept C91129048 @default.
- W2247113309 hasConceptScore W2247113309C104232198 @default.
- W2247113309 hasConceptScore W2247113309C121332964 @default.
- W2247113309 hasConceptScore W2247113309C138631740 @default.
- W2247113309 hasConceptScore W2247113309C159467904 @default.
- W2247113309 hasConceptScore W2247113309C171250308 @default.
- W2247113309 hasConceptScore W2247113309C17729963 @default.
- W2247113309 hasConceptScore W2247113309C185592680 @default.
- W2247113309 hasConceptScore W2247113309C192562407 @default.
- W2247113309 hasConceptScore W2247113309C201999631 @default.
- W2247113309 hasConceptScore W2247113309C26873012 @default.
- W2247113309 hasConceptScore W2247113309C2779892579 @default.
- W2247113309 hasConceptScore W2247113309C49040817 @default.
- W2247113309 hasConceptScore W2247113309C513720949 @default.
- W2247113309 hasConceptScore W2247113309C62520636 @default.
- W2247113309 hasConceptScore W2247113309C79794668 @default.
- W2247113309 hasConceptScore W2247113309C91129048 @default.
- W2247113309 hasFunder F4320306101 @default.
- W2247113309 hasFunder F4320309594 @default.
- W2247113309 hasFunder F4320332454 @default.
- W2247113309 hasFunder F4320332664 @default.
- W2247113309 hasFunder F4320337368 @default.
- W2247113309 hasFunder F4320337390 @default.
- W2247113309 hasFunder F4320337393 @default.
- W2247113309 hasIssue "10" @default.
- W2247113309 hasLocation W22471133091 @default.
- W2247113309 hasLocation W22471133092 @default.