Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247114712> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2247114712 endingPage "7" @default.
- W2247114712 startingPage "22" @default.
- W2247114712 abstract "Statistical modeling and developing new methods for estimating burden of diseases, injuries and risk factors is a fundamental concern in studying the country health situation for better health management and policy making. Bayesian autoregressive multilevel model is a strong method for this kind of study though in complex situations it has its own challenges. Our study aims to describe the way of modeling space and time data through an autoregressive multilevel model and address challenges in complex situation.We will obtain data from different published and unpublished secondary data sources including population-based health surveys (e. g. NHS, DHS, STEP) at national and provincial levels and we also assess epidemiological studies via systematic review for each disease, injuries and risk factor over the period of 1990-2013. These data generally have a multilevel hierarchy and also time correlation. However, statistical analysis of diseases, injuries and risk factors data is primarily facing the problem of information scarcity. Data are generally too scarce to ensure reliable estimates in many practical problems. Also, there may be nonlinear changes over time, different kind of uncertainties in data and incompatible geographical data. We describe Bayesian autoregressive multilevel modeling approach that provides a natural solution to these problems through its ability to sensibly combine information from several sources of data and available prior information. In this hierarchy model levels of each hierarchy borrow information from each other and also lower levels borrow information from higher levels. We will fit the model using Markov Chain Monte Carlo (MCMC) methods because of its capabilities and benefits in complex cases.Our analyses will include different existing sources of data in Iran for 24 years through a rational and reasonable model to estimate burden of diseases, injuries and risk factors for Iran at national, regional and provincial levels while considering several kinds of uncertainties. Comprehensive and realistic estimates are always an issue of request that will be obtained through a suitable statistical modeling considering all dimensions and then can be used for making better decision in real situations." @default.
- W2247114712 created "2016-06-24" @default.
- W2247114712 creator A5004620111 @default.
- W2247114712 creator A5011020755 @default.
- W2247114712 creator A5022488580 @default.
- W2247114712 creator A5035870050 @default.
- W2247114712 creator A5084511527 @default.
- W2247114712 creator A5084609525 @default.
- W2247114712 date "2014-01-01" @default.
- W2247114712 modified "2023-09-26" @default.
- W2247114712 title "Bayesian autoregressive multilevel modeling of burden of diseases, injuries and risk factors in Iran 1990 - 2013." @default.
- W2247114712 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24444061" @default.
- W2247114712 hasPublicationYear "2014" @default.
- W2247114712 type Work @default.
- W2247114712 sameAs 2247114712 @default.
- W2247114712 citedByCount "28" @default.
- W2247114712 countsByYear W22471147122014 @default.
- W2247114712 countsByYear W22471147122015 @default.
- W2247114712 countsByYear W22471147122016 @default.
- W2247114712 countsByYear W22471147122017 @default.
- W2247114712 countsByYear W22471147122018 @default.
- W2247114712 countsByYear W22471147122019 @default.
- W2247114712 countsByYear W22471147122022 @default.
- W2247114712 crossrefType "journal-article" @default.
- W2247114712 hasAuthorship W2247114712A5004620111 @default.
- W2247114712 hasAuthorship W2247114712A5011020755 @default.
- W2247114712 hasAuthorship W2247114712A5022488580 @default.
- W2247114712 hasAuthorship W2247114712A5035870050 @default.
- W2247114712 hasAuthorship W2247114712A5084511527 @default.
- W2247114712 hasAuthorship W2247114712A5084609525 @default.
- W2247114712 hasConcept C105795698 @default.
- W2247114712 hasConcept C107673813 @default.
- W2247114712 hasConcept C111350023 @default.
- W2247114712 hasConcept C114289077 @default.
- W2247114712 hasConcept C119857082 @default.
- W2247114712 hasConcept C124101348 @default.
- W2247114712 hasConcept C126322002 @default.
- W2247114712 hasConcept C144986985 @default.
- W2247114712 hasConcept C149782125 @default.
- W2247114712 hasConcept C154945302 @default.
- W2247114712 hasConcept C159877910 @default.
- W2247114712 hasConcept C162324750 @default.
- W2247114712 hasConcept C168743327 @default.
- W2247114712 hasConcept C2908647359 @default.
- W2247114712 hasConcept C31170391 @default.
- W2247114712 hasConcept C33923547 @default.
- W2247114712 hasConcept C34447519 @default.
- W2247114712 hasConcept C41008148 @default.
- W2247114712 hasConcept C53059260 @default.
- W2247114712 hasConcept C71924100 @default.
- W2247114712 hasConcept C95190672 @default.
- W2247114712 hasConcept C99454951 @default.
- W2247114712 hasConceptScore W2247114712C105795698 @default.
- W2247114712 hasConceptScore W2247114712C107673813 @default.
- W2247114712 hasConceptScore W2247114712C111350023 @default.
- W2247114712 hasConceptScore W2247114712C114289077 @default.
- W2247114712 hasConceptScore W2247114712C119857082 @default.
- W2247114712 hasConceptScore W2247114712C124101348 @default.
- W2247114712 hasConceptScore W2247114712C126322002 @default.
- W2247114712 hasConceptScore W2247114712C144986985 @default.
- W2247114712 hasConceptScore W2247114712C149782125 @default.
- W2247114712 hasConceptScore W2247114712C154945302 @default.
- W2247114712 hasConceptScore W2247114712C159877910 @default.
- W2247114712 hasConceptScore W2247114712C162324750 @default.
- W2247114712 hasConceptScore W2247114712C168743327 @default.
- W2247114712 hasConceptScore W2247114712C2908647359 @default.
- W2247114712 hasConceptScore W2247114712C31170391 @default.
- W2247114712 hasConceptScore W2247114712C33923547 @default.
- W2247114712 hasConceptScore W2247114712C34447519 @default.
- W2247114712 hasConceptScore W2247114712C41008148 @default.
- W2247114712 hasConceptScore W2247114712C53059260 @default.
- W2247114712 hasConceptScore W2247114712C71924100 @default.
- W2247114712 hasConceptScore W2247114712C95190672 @default.
- W2247114712 hasConceptScore W2247114712C99454951 @default.
- W2247114712 hasIssue "1" @default.
- W2247114712 hasLocation W22471147121 @default.
- W2247114712 hasOpenAccess W2247114712 @default.
- W2247114712 hasPrimaryLocation W22471147121 @default.
- W2247114712 hasRelatedWork W1484328682 @default.
- W2247114712 hasRelatedWork W1991247336 @default.
- W2247114712 hasRelatedWork W2007163292 @default.
- W2247114712 hasRelatedWork W2029687411 @default.
- W2247114712 hasRelatedWork W2111667555 @default.
- W2247114712 hasRelatedWork W2247114712 @default.
- W2247114712 hasRelatedWork W2269698589 @default.
- W2247114712 hasRelatedWork W2739886334 @default.
- W2247114712 hasRelatedWork W2782767315 @default.
- W2247114712 hasRelatedWork W3198830314 @default.
- W2247114712 hasVolume "17" @default.
- W2247114712 isParatext "false" @default.
- W2247114712 isRetracted "false" @default.
- W2247114712 magId "2247114712" @default.
- W2247114712 workType "article" @default.