Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247125043> ?p ?o ?g. }
- W2247125043 endingPage "5636" @default.
- W2247125043 startingPage "5613" @default.
- W2247125043 abstract "Robust classification approaches are required for accurate classification of complex land-use/land-cover categories of desert landscapes using remotely sensed data. Machine-learning ensemble classifiers have proved to be powerful for the classification of remotely sensed data. However, they have not been evaluated for classifying land-cover categories in desert regions. In this study, the performance of two machine-learning ensemble classifiers – random forests (RF) and boosted artificial neural networks – is explored in the context of classification of land use/land cover of desert landscapes. The evaluation is based on the accuracy of classification of remotely sensed data, with and without integration of ancillary data. Landsat-5 Thematic Mapper data captured for a desert landscape in the north-western coastal desert of Egypt are used with ancillary variables derived from a digital terrain model to classify 13 different land-use/land-cover categories. Results show that the two ensemble methods produce accurate land-cover classifications, with and without integrating spectral data with ancillary data. In general, the overall accuracy exceeded 85% and the kappa coefficient (κ) attained values over 0.83. The integration of ancillary data improved the performance of the boosted artificial neural networks by approximately 5% and the random forests by 9%. The latter showed overall higher accuracy; however, boosted artificial neural networks showed better generalization ability and lower overfitting tendencies. The results reveal the merit of applying ensemble methods to integrated spectral and ancillary data of similar desert landscapes for achieving high classification accuracies." @default.
- W2247125043 created "2016-06-24" @default.
- W2247125043 creator A5004285610 @default.
- W2247125043 creator A5055263281 @default.
- W2247125043 date "2015-11-16" @default.
- W2247125043 modified "2023-09-30" @default.
- W2247125043 title "The application of ensemble techniques for land-cover classification in arid lands" @default.
- W2247125043 cites W1536340909 @default.
- W2247125043 cites W1579657217 @default.
- W2247125043 cites W1593734867 @default.
- W2247125043 cites W1605688901 @default.
- W2247125043 cites W1909207154 @default.
- W2247125043 cites W1978034823 @default.
- W2247125043 cites W1982621055 @default.
- W2247125043 cites W1989149221 @default.
- W2247125043 cites W1990653740 @default.
- W2247125043 cites W1998442441 @default.
- W2247125043 cites W2010479838 @default.
- W2247125043 cites W2026237486 @default.
- W2247125043 cites W2037308434 @default.
- W2247125043 cites W2037513227 @default.
- W2247125043 cites W2044465660 @default.
- W2247125043 cites W2048521685 @default.
- W2247125043 cites W2049827513 @default.
- W2247125043 cites W2060594561 @default.
- W2247125043 cites W2063580009 @default.
- W2247125043 cites W2071556151 @default.
- W2247125043 cites W2078209294 @default.
- W2247125043 cites W2079019836 @default.
- W2247125043 cites W2079454091 @default.
- W2247125043 cites W2081562328 @default.
- W2247125043 cites W2082874195 @default.
- W2247125043 cites W2084113824 @default.
- W2247125043 cites W2084166106 @default.
- W2247125043 cites W2094899764 @default.
- W2247125043 cites W2099577969 @default.
- W2247125043 cites W2102767685 @default.
- W2247125043 cites W2103699041 @default.
- W2247125043 cites W2104896032 @default.
- W2247125043 cites W2111429913 @default.
- W2247125043 cites W2113388748 @default.
- W2247125043 cites W2117706739 @default.
- W2247125043 cites W2121025662 @default.
- W2247125043 cites W2123775670 @default.
- W2247125043 cites W2124889555 @default.
- W2247125043 cites W2130269771 @default.
- W2247125043 cites W2130794164 @default.
- W2247125043 cites W2132424470 @default.
- W2247125043 cites W2133218851 @default.
- W2247125043 cites W2133785052 @default.
- W2247125043 cites W2135822449 @default.
- W2247125043 cites W2138715276 @default.
- W2247125043 cites W2138875721 @default.
- W2247125043 cites W2138973222 @default.
- W2247125043 cites W2144109235 @default.
- W2247125043 cites W2144801192 @default.
- W2247125043 cites W2145862305 @default.
- W2247125043 cites W2155632266 @default.
- W2247125043 cites W2164921999 @default.
- W2247125043 cites W2165491713 @default.
- W2247125043 cites W2167277498 @default.
- W2247125043 cites W2167433624 @default.
- W2247125043 cites W2167917621 @default.
- W2247125043 cites W2168481151 @default.
- W2247125043 cites W2911964244 @default.
- W2247125043 cites W3141093639 @default.
- W2247125043 cites W4212883601 @default.
- W2247125043 cites W4249209379 @default.
- W2247125043 cites W4300402905 @default.
- W2247125043 cites W747777283 @default.
- W2247125043 doi "https://doi.org/10.1080/01431161.2015.1103915" @default.
- W2247125043 hasPublicationYear "2015" @default.
- W2247125043 type Work @default.
- W2247125043 sameAs 2247125043 @default.
- W2247125043 citedByCount "22" @default.
- W2247125043 countsByYear W22471250432016 @default.
- W2247125043 countsByYear W22471250432017 @default.
- W2247125043 countsByYear W22471250432018 @default.
- W2247125043 countsByYear W22471250432019 @default.
- W2247125043 countsByYear W22471250432021 @default.
- W2247125043 countsByYear W22471250432022 @default.
- W2247125043 countsByYear W22471250432023 @default.
- W2247125043 crossrefType "journal-article" @default.
- W2247125043 hasAuthorship W2247125043A5004285610 @default.
- W2247125043 hasAuthorship W2247125043A5055263281 @default.
- W2247125043 hasConcept C111472728 @default.
- W2247125043 hasConcept C119857082 @default.
- W2247125043 hasConcept C127413603 @default.
- W2247125043 hasConcept C138885662 @default.
- W2247125043 hasConcept C147176958 @default.
- W2247125043 hasConcept C150772632 @default.
- W2247125043 hasConcept C151730666 @default.
- W2247125043 hasConcept C154945302 @default.
- W2247125043 hasConcept C161840515 @default.
- W2247125043 hasConcept C166957645 @default.
- W2247125043 hasConcept C169258074 @default.
- W2247125043 hasConcept C205649164 @default.
- W2247125043 hasConcept C22019652 @default.