Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247155460> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2247155460 abstract "This study investigates the degree to which the performance of Bayesian belief networks (BBNs), for computer-assisted diagnosis of breast cancer, can be improved by optimizing their input feature sets using a genetic algorithm (GA). 421 cases (all women) were used in this study, of which 92 were positive for breast cancer. Each case contained both non-image information and image information derived from mammograms by radiologists. A GA was used to select an optimal subset of features, from a total of 21, to use as the basis for a BBN classifier. The figure-of-merit used in the GA's evaluation of feature subsets was A<SUB>z</SUB>, the area under the ROC curve produced by the corresponding BBN classifier. For each feature subset evaluated by the GA, a BBN was developed to classify positive and negative cases. Overall performance of the BBNs was evaluated using a jackknife testing method to calculate A<SUB>z</SUB>, for their respective ROC curves. The A<SUB>z</SUB> value of the BBN incorporating all 21 features was 0.851 plus or minus 0.012. After a 93 generation search, the GA found an optimal feature set with four non-image and four mammographic features, which achieved an A<SUB>z</SUB> value of 0.927 plus or minus 0.009. This study suggests that GAs are a viable means to optimize feature sets, and optimizing feature sets can result in significant performance improvements." @default.
- W2247155460 created "2016-06-24" @default.
- W2247155460 creator A5019114101 @default.
- W2247155460 creator A5040403651 @default.
- W2247155460 creator A5045998635 @default.
- W2247155460 creator A5050580041 @default.
- W2247155460 date "1999-05-21" @default.
- W2247155460 modified "2023-09-26" @default.
- W2247155460 title "<title>Optimizing the feature set for a Bayesian network for breast cancer diagnosis using genetic algorithm techniques</title>" @default.
- W2247155460 cites W179935495 @default.
- W2247155460 cites W1965043773 @default.
- W2247155460 cites W1971117990 @default.
- W2247155460 cites W1972536364 @default.
- W2247155460 cites W1973378735 @default.
- W2247155460 cites W1983664690 @default.
- W2247155460 cites W2002026327 @default.
- W2247155460 cites W2035005104 @default.
- W2247155460 cites W2067627322 @default.
- W2247155460 cites W2081824827 @default.
- W2247155460 cites W2085648080 @default.
- W2247155460 cites W2098985260 @default.
- W2247155460 cites W2131148034 @default.
- W2247155460 cites W2151817208 @default.
- W2247155460 cites W2163842499 @default.
- W2247155460 doi "https://doi.org/10.1117/12.348560" @default.
- W2247155460 hasPublicationYear "1999" @default.
- W2247155460 type Work @default.
- W2247155460 sameAs 2247155460 @default.
- W2247155460 citedByCount "3" @default.
- W2247155460 countsByYear W22471554602012 @default.
- W2247155460 countsByYear W22471554602014 @default.
- W2247155460 countsByYear W22471554602018 @default.
- W2247155460 crossrefType "proceedings-article" @default.
- W2247155460 hasAuthorship W2247155460A5019114101 @default.
- W2247155460 hasAuthorship W2247155460A5040403651 @default.
- W2247155460 hasAuthorship W2247155460A5045998635 @default.
- W2247155460 hasAuthorship W2247155460A5050580041 @default.
- W2247155460 hasConcept C11413529 @default.
- W2247155460 hasConcept C119857082 @default.
- W2247155460 hasConcept C12267149 @default.
- W2247155460 hasConcept C124101348 @default.
- W2247155460 hasConcept C138885662 @default.
- W2247155460 hasConcept C153180895 @default.
- W2247155460 hasConcept C154945302 @default.
- W2247155460 hasConcept C2776401178 @default.
- W2247155460 hasConcept C33724603 @default.
- W2247155460 hasConcept C33923547 @default.
- W2247155460 hasConcept C41008148 @default.
- W2247155460 hasConcept C41895202 @default.
- W2247155460 hasConcept C52001869 @default.
- W2247155460 hasConcept C52622490 @default.
- W2247155460 hasConcept C8880873 @default.
- W2247155460 hasConcept C95623464 @default.
- W2247155460 hasConceptScore W2247155460C11413529 @default.
- W2247155460 hasConceptScore W2247155460C119857082 @default.
- W2247155460 hasConceptScore W2247155460C12267149 @default.
- W2247155460 hasConceptScore W2247155460C124101348 @default.
- W2247155460 hasConceptScore W2247155460C138885662 @default.
- W2247155460 hasConceptScore W2247155460C153180895 @default.
- W2247155460 hasConceptScore W2247155460C154945302 @default.
- W2247155460 hasConceptScore W2247155460C2776401178 @default.
- W2247155460 hasConceptScore W2247155460C33724603 @default.
- W2247155460 hasConceptScore W2247155460C33923547 @default.
- W2247155460 hasConceptScore W2247155460C41008148 @default.
- W2247155460 hasConceptScore W2247155460C41895202 @default.
- W2247155460 hasConceptScore W2247155460C52001869 @default.
- W2247155460 hasConceptScore W2247155460C52622490 @default.
- W2247155460 hasConceptScore W2247155460C8880873 @default.
- W2247155460 hasConceptScore W2247155460C95623464 @default.
- W2247155460 hasLocation W22471554601 @default.
- W2247155460 hasOpenAccess W2247155460 @default.
- W2247155460 hasPrimaryLocation W22471554601 @default.
- W2247155460 hasRelatedWork W2016461833 @default.
- W2247155460 hasRelatedWork W2022996092 @default.
- W2247155460 hasRelatedWork W2149078746 @default.
- W2247155460 hasRelatedWork W2546942002 @default.
- W2247155460 hasRelatedWork W2547131314 @default.
- W2247155460 hasRelatedWork W2784352036 @default.
- W2247155460 hasRelatedWork W2807311372 @default.
- W2247155460 hasRelatedWork W2905846897 @default.
- W2247155460 hasRelatedWork W3203501097 @default.
- W2247155460 hasRelatedWork W4367598285 @default.
- W2247155460 isParatext "false" @default.
- W2247155460 isRetracted "false" @default.
- W2247155460 magId "2247155460" @default.
- W2247155460 workType "article" @default.