Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247164508> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2247164508 abstract "This thesis explored using hidden Markov models for modeling time series and applied the model to both point forecasting and density forecasting. Traditionally, hidden Markov models are used in speech recognition, where predictions are not concerned. In this thesis, we used the algorithm to do both point forecasting and density forecasting. This thesis contains both theoretical and empirical analysis of the methods. The studies lead to the understanding of the method's behavior and possible applications to financial time series.Hidden Markov Experts extend directly from hidden Markov models. In the proposed model, each expert can be linear or nonlinear. Based on the likelihood function, we discussed the EM algorithm for Hidden Markov Experts. We used the model in point forecasting and in regime recovering. For the computer simulated data, the new algorithm found the correct parameters and recovered the regimes that generating the data. Compared to the gated experts, the new approach is more powerful in modeling regime switching time series. The new algorithm is also applied to real world financial data: modeling both high frequency foreign exchange data and daily S&P500 data. The regimes retrieved by Hidden Markov Experts were found to be corresponding to the volatility clustering. This makes further applications of Hidden Markov Experts in option pricing a very interesting topic for future study.Hidden Markov Experts are also used to predict the conditional density of time series. Switching models were mainly used in economic field to predict only the conditional mean of time series. In this thesis, we applied Hidden Markov Experts to construct the density forecasts by assuming the density is mixture of Gaussians. From the simulated experiment, we can see that hidden Markov experts can predict the density correctly under the criteria of probability integral transform method. We also applied this approach to the S&P 500 data. It is important to see that even it is hard to predict to conditional mean, the algorithm still significantly improves the forecasts of density." @default.
- W2247164508 created "2016-06-24" @default.
- W2247164508 creator A5037027451 @default.
- W2247164508 creator A5038440819 @default.
- W2247164508 creator A5044496457 @default.
- W2247164508 date "1998-01-01" @default.
- W2247164508 modified "2023-09-23" @default.
- W2247164508 title "Modeling temporal structure of time series with hidden markov experts" @default.
- W2247164508 hasPublicationYear "1998" @default.
- W2247164508 type Work @default.
- W2247164508 sameAs 2247164508 @default.
- W2247164508 citedByCount "1" @default.
- W2247164508 crossrefType "journal-article" @default.
- W2247164508 hasAuthorship W2247164508A5037027451 @default.
- W2247164508 hasAuthorship W2247164508A5038440819 @default.
- W2247164508 hasAuthorship W2247164508A5044496457 @default.
- W2247164508 hasConcept C119857082 @default.
- W2247164508 hasConcept C124101348 @default.
- W2247164508 hasConcept C143724316 @default.
- W2247164508 hasConcept C149782125 @default.
- W2247164508 hasConcept C151406439 @default.
- W2247164508 hasConcept C151730666 @default.
- W2247164508 hasConcept C154945302 @default.
- W2247164508 hasConcept C163836022 @default.
- W2247164508 hasConcept C189973286 @default.
- W2247164508 hasConcept C196455857 @default.
- W2247164508 hasConcept C196956702 @default.
- W2247164508 hasConcept C23224414 @default.
- W2247164508 hasConcept C33923547 @default.
- W2247164508 hasConcept C41008148 @default.
- W2247164508 hasConcept C54907487 @default.
- W2247164508 hasConcept C64939953 @default.
- W2247164508 hasConcept C73555534 @default.
- W2247164508 hasConcept C86803240 @default.
- W2247164508 hasConcept C98763669 @default.
- W2247164508 hasConceptScore W2247164508C119857082 @default.
- W2247164508 hasConceptScore W2247164508C124101348 @default.
- W2247164508 hasConceptScore W2247164508C143724316 @default.
- W2247164508 hasConceptScore W2247164508C149782125 @default.
- W2247164508 hasConceptScore W2247164508C151406439 @default.
- W2247164508 hasConceptScore W2247164508C151730666 @default.
- W2247164508 hasConceptScore W2247164508C154945302 @default.
- W2247164508 hasConceptScore W2247164508C163836022 @default.
- W2247164508 hasConceptScore W2247164508C189973286 @default.
- W2247164508 hasConceptScore W2247164508C196455857 @default.
- W2247164508 hasConceptScore W2247164508C196956702 @default.
- W2247164508 hasConceptScore W2247164508C23224414 @default.
- W2247164508 hasConceptScore W2247164508C33923547 @default.
- W2247164508 hasConceptScore W2247164508C41008148 @default.
- W2247164508 hasConceptScore W2247164508C54907487 @default.
- W2247164508 hasConceptScore W2247164508C64939953 @default.
- W2247164508 hasConceptScore W2247164508C73555534 @default.
- W2247164508 hasConceptScore W2247164508C86803240 @default.
- W2247164508 hasConceptScore W2247164508C98763669 @default.
- W2247164508 hasLocation W22471645081 @default.
- W2247164508 hasOpenAccess W2247164508 @default.
- W2247164508 hasPrimaryLocation W22471645081 @default.
- W2247164508 hasRelatedWork W1488907595 @default.
- W2247164508 hasRelatedWork W1491559336 @default.
- W2247164508 hasRelatedWork W1860090570 @default.
- W2247164508 hasRelatedWork W191130283 @default.
- W2247164508 hasRelatedWork W2024511855 @default.
- W2247164508 hasRelatedWork W2073293214 @default.
- W2247164508 hasRelatedWork W2105346798 @default.
- W2247164508 hasRelatedWork W2142789080 @default.
- W2247164508 hasRelatedWork W2152621450 @default.
- W2247164508 hasRelatedWork W2241338290 @default.
- W2247164508 hasRelatedWork W2245218972 @default.
- W2247164508 hasRelatedWork W23740867 @default.
- W2247164508 hasRelatedWork W2604015228 @default.
- W2247164508 hasRelatedWork W2738224259 @default.
- W2247164508 hasRelatedWork W2892479684 @default.
- W2247164508 hasRelatedWork W2921939473 @default.
- W2247164508 hasRelatedWork W3027751917 @default.
- W2247164508 hasRelatedWork W3101437848 @default.
- W2247164508 hasRelatedWork W3124427131 @default.
- W2247164508 hasRelatedWork W384167648 @default.
- W2247164508 isParatext "false" @default.
- W2247164508 isRetracted "false" @default.
- W2247164508 magId "2247164508" @default.
- W2247164508 workType "article" @default.