Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247167922> ?p ?o ?g. }
- W2247167922 endingPage "46" @default.
- W2247167922 startingPage "1" @default.
- W2247167922 abstract "Data clustering is a popular unsupervised data mining tool that is used for partitioning a given dataset into homogeneous groups based on some similarity/dissimilarity metric. Traditional clustering algorithms often make prior assumptions about the cluster structure and adopt a corresponding suitable objective function that is optimized either through classical techniques or metaheuristic approaches. These algorithms are known to perform poorly when the cluster assumptions do not hold in the data. Multiobjective clustering, in which multiple objective functions are simultaneously optimized, has emerged as an attractive and robust alternative in such situations. In particular, application of multiobjective evolutionary algorithms for clustering has become popular in the past decade because of their population-based nature. Here, we provide a comprehensive and critical survey of the multitude of multiobjective evolutionary clustering techniques existing in the literature. The techniques are classified according to the encoding strategies adopted, objective functions, evolutionary operators, strategy for maintaining nondominated solutions, and the method of selection of the final solution. The pros and cons of the different approaches are mentioned. Finally, we have discussed some real-life applications of multiobjective clustering in the domains of image segmentation, bioinformatics, web mining, and so forth." @default.
- W2247167922 created "2016-06-24" @default.
- W2247167922 creator A5016363044 @default.
- W2247167922 creator A5024089437 @default.
- W2247167922 creator A5036061149 @default.
- W2247167922 date "2015-05-26" @default.
- W2247167922 modified "2023-10-18" @default.
- W2247167922 title "A Survey of Multiobjective Evolutionary Clustering" @default.
- W2247167922 cites W1393918 @default.
- W2247167922 cites W1494807122 @default.
- W2247167922 cites W1505991192 @default.
- W2247167922 cites W1525331570 @default.
- W2247167922 cites W1534851011 @default.
- W2247167922 cites W1559701175 @default.
- W2247167922 cites W1579947540 @default.
- W2247167922 cites W1588375755 @default.
- W2247167922 cites W169025432 @default.
- W2247167922 cites W1966253115 @default.
- W2247167922 cites W1978527081 @default.
- W2247167922 cites W1982732700 @default.
- W2247167922 cites W1983753875 @default.
- W2247167922 cites W1987971958 @default.
- W2247167922 cites W1992419399 @default.
- W2247167922 cites W1993589337 @default.
- W2247167922 cites W1996747841 @default.
- W2247167922 cites W2000077490 @default.
- W2247167922 cites W2010583686 @default.
- W2247167922 cites W2018712218 @default.
- W2247167922 cites W2018744542 @default.
- W2247167922 cites W2022093457 @default.
- W2247167922 cites W2029064186 @default.
- W2247167922 cites W2031232041 @default.
- W2247167922 cites W2031842395 @default.
- W2247167922 cites W2031895827 @default.
- W2247167922 cites W2032267167 @default.
- W2247167922 cites W2032637211 @default.
- W2247167922 cites W2033881759 @default.
- W2247167922 cites W2036684903 @default.
- W2247167922 cites W2038420231 @default.
- W2247167922 cites W2042995932 @default.
- W2247167922 cites W2049999437 @default.
- W2247167922 cites W2051224630 @default.
- W2247167922 cites W2053677366 @default.
- W2247167922 cites W2054635964 @default.
- W2247167922 cites W2055230079 @default.
- W2247167922 cites W2057923756 @default.
- W2247167922 cites W2061701011 @default.
- W2247167922 cites W2063369410 @default.
- W2247167922 cites W2071949631 @default.
- W2247167922 cites W2071965987 @default.
- W2247167922 cites W2072431382 @default.
- W2247167922 cites W2073849744 @default.
- W2247167922 cites W2075813083 @default.
- W2247167922 cites W2093792942 @default.
- W2247167922 cites W2094637022 @default.
- W2247167922 cites W2096191664 @default.
- W2247167922 cites W2097645701 @default.
- W2247167922 cites W2104492856 @default.
- W2247167922 cites W2106307115 @default.
- W2247167922 cites W2107431669 @default.
- W2247167922 cites W2108031918 @default.
- W2247167922 cites W2108323654 @default.
- W2247167922 cites W2109619915 @default.
- W2247167922 cites W2111540240 @default.
- W2247167922 cites W2115831762 @default.
- W2247167922 cites W2116661285 @default.
- W2247167922 cites W2117306774 @default.
- W2247167922 cites W2120529703 @default.
- W2247167922 cites W2126105956 @default.
- W2247167922 cites W2128669740 @default.
- W2247167922 cites W2129066856 @default.
- W2247167922 cites W2131435419 @default.
- W2247167922 cites W2133098435 @default.
- W2247167922 cites W2148162785 @default.
- W2247167922 cites W2148511782 @default.
- W2247167922 cites W2152033532 @default.
- W2247167922 cites W2160790634 @default.
- W2247167922 cites W2162934302 @default.
- W2247167922 cites W2166143448 @default.
- W2247167922 cites W2170975407 @default.
- W2247167922 cites W2171975443 @default.
- W2247167922 cites W2489066590 @default.
- W2247167922 cites W4235965783 @default.
- W2247167922 doi "https://doi.org/10.1145/2742642" @default.
- W2247167922 hasPublicationYear "2015" @default.
- W2247167922 type Work @default.
- W2247167922 sameAs 2247167922 @default.
- W2247167922 citedByCount "122" @default.
- W2247167922 countsByYear W22471679222016 @default.
- W2247167922 countsByYear W22471679222017 @default.
- W2247167922 countsByYear W22471679222018 @default.
- W2247167922 countsByYear W22471679222019 @default.
- W2247167922 countsByYear W22471679222020 @default.
- W2247167922 countsByYear W22471679222021 @default.
- W2247167922 countsByYear W22471679222022 @default.
- W2247167922 countsByYear W22471679222023 @default.
- W2247167922 crossrefType "journal-article" @default.
- W2247167922 hasAuthorship W2247167922A5016363044 @default.