Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247234543> ?p ?o ?g. }
Showing items 1 to 63 of
63
with 100 items per page.
- W2247234543 abstract "The idea of describing the eigenvalues of bosonic and fermionic fields in quantum fieldtheory by commuting and anticommuting variables led to the development of supermanifolds in the 1970s. Of particular interest to condensed matter physicists studyingdisordered systems are symmetric super spaces, i.e. quotients G/K of Lie super groups,because those arise for example as the target spaces of non-linear σ -models, whichare the effective low energy theories for disordered fermionic systems with quadraticHamiltonians in the thermodynamic limit. See [Zir98] for an elaborate discussion ofan application. An interesting development is [LSZ07] which proves that an importantstep in the development of these physical models is indeed mathematically rigorous.A recent example using this new technique can be found in [SZ10].Recently, active research has been focused on the development of harmonic analysison symmetric super spaces ([AHZ08, All10, AHL11]). One goal here is to prove a superFourier inversion formula and hence obtain a tool to solve linear partial differentialequations involving G-invariant differential operators on G/K as appear in the aforementioned examples from physics. To this end one needs to understand sphericalfunctions, i.e. the K-biinvariant joint eigenfunctions of such differential operators andin particular their asymptotics. We expect that, as in the classical case, those functionscan be characterised as matrix coeffcients of the spherical representations of G, i.e.those containing a K -invariant vector. The goal of this thesis is therefore to determinewhich finite dimensional irreducible G representations are spherical. For concretenessand to avoid problems stemming from non-compact real forms we restrict our attentionto the Lie super algebra level and study the symmetric pair g = glq|r+s with sub Liesuper algebra k = glq|r ⊕ gl0|s .Our main result, Theorem 3.60 on page 53, is a generalisation of a classical theoremdue to Helgason, [Hel84], Chapter V, Theorem 4.1, which states that a representationis spherical if and only if the highest weight vector is M -invariant, where Q = M ANis a minimal parabolic subgroup of G. It turns out that this is exactly the same in thesuper case. For the proof we use methods developed by Schlichtkrul, [Sch84], to reducethe use of integration, which in the super world holds much more pitfalls. Similar tothe ordinary case we can then classify the spherical representations in terms of theirhighest weights in Lemma 3.61 and the subsequent corollaries. At least for glq|r+1 withr > q this classiffcation is complete, but see Chapter 4 for some immediate as well asconjectured generalisations." @default.
- W2247234543 created "2016-06-24" @default.
- W2247234543 creator A5064789877 @default.
- W2247234543 date "2011-10-01" @default.
- W2247234543 modified "2023-09-27" @default.
- W2247234543 title "Spherical representations of reductive Lie super algebras" @default.
- W2247234543 hasPublicationYear "2011" @default.
- W2247234543 type Work @default.
- W2247234543 sameAs 2247234543 @default.
- W2247234543 citedByCount "0" @default.
- W2247234543 crossrefType "dissertation" @default.
- W2247234543 hasAuthorship W2247234543A5064789877 @default.
- W2247234543 hasConcept C121332964 @default.
- W2247234543 hasConcept C128803854 @default.
- W2247234543 hasConcept C136119220 @default.
- W2247234543 hasConcept C158693339 @default.
- W2247234543 hasConcept C190470478 @default.
- W2247234543 hasConcept C197273675 @default.
- W2247234543 hasConcept C202444582 @default.
- W2247234543 hasConcept C33923547 @default.
- W2247234543 hasConcept C37914503 @default.
- W2247234543 hasConcept C51568863 @default.
- W2247234543 hasConcept C62520636 @default.
- W2247234543 hasConcept C70915906 @default.
- W2247234543 hasConceptScore W2247234543C121332964 @default.
- W2247234543 hasConceptScore W2247234543C128803854 @default.
- W2247234543 hasConceptScore W2247234543C136119220 @default.
- W2247234543 hasConceptScore W2247234543C158693339 @default.
- W2247234543 hasConceptScore W2247234543C190470478 @default.
- W2247234543 hasConceptScore W2247234543C197273675 @default.
- W2247234543 hasConceptScore W2247234543C202444582 @default.
- W2247234543 hasConceptScore W2247234543C33923547 @default.
- W2247234543 hasConceptScore W2247234543C37914503 @default.
- W2247234543 hasConceptScore W2247234543C51568863 @default.
- W2247234543 hasConceptScore W2247234543C62520636 @default.
- W2247234543 hasConceptScore W2247234543C70915906 @default.
- W2247234543 hasLocation W22472345431 @default.
- W2247234543 hasOpenAccess W2247234543 @default.
- W2247234543 hasPrimaryLocation W22472345431 @default.
- W2247234543 hasRelatedWork W1905124101 @default.
- W2247234543 hasRelatedWork W1978244520 @default.
- W2247234543 hasRelatedWork W1991404205 @default.
- W2247234543 hasRelatedWork W2004625085 @default.
- W2247234543 hasRelatedWork W2016067185 @default.
- W2247234543 hasRelatedWork W2056325794 @default.
- W2247234543 hasRelatedWork W2087082406 @default.
- W2247234543 hasRelatedWork W2093534095 @default.
- W2247234543 hasRelatedWork W2259572530 @default.
- W2247234543 hasRelatedWork W2565218974 @default.
- W2247234543 hasRelatedWork W2790386785 @default.
- W2247234543 hasRelatedWork W2950221428 @default.
- W2247234543 hasRelatedWork W2963326901 @default.
- W2247234543 hasRelatedWork W3003436562 @default.
- W2247234543 hasRelatedWork W303939704 @default.
- W2247234543 hasRelatedWork W3098359374 @default.
- W2247234543 hasRelatedWork W3101789055 @default.
- W2247234543 hasRelatedWork W3103307021 @default.
- W2247234543 hasRelatedWork W3126072351 @default.
- W2247234543 hasRelatedWork W33973844 @default.
- W2247234543 isParatext "false" @default.
- W2247234543 isRetracted "false" @default.
- W2247234543 magId "2247234543" @default.
- W2247234543 workType "dissertation" @default.