Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247407167> ?p ?o ?g. }
- W2247407167 abstract "Two approaches have been proposed in statistical and machine learning communities in order to address the problem of uncovering clusters with complex structure. One approach relies on the development of clustering criteria that are able to accommodate increasingly complex characteristics of the data. The other approach is based on simplification of structure of data by mapping it to a different feature space via a non-linear function and then clustering in the new space. This dissertation covers three related studies: development of a novel multi-dimensional clustering method, development of non-linear mapping functions that leverage higher-order co-occurrences between features in boolean data, and applications of these mapping functions for improving the performance of clustering methods. In particular, we treat clustering as a combinatorial optimization problem of finding a partition of the data so as to minimize a certain criterion. We develop a novel multi-dimensional clustering method based on a statistically-motivated criterion proposed by J. Neyman for stratified sampling from one-dimensional data. We show that this criterion is more reflective of the underlying data structure than the seemingly similar K-means criterion when second order variability is not homogeneous between constituent subgroups. Furthermore, experimental results demonstrate that generalization of the Neyman's criterion to multi-dimensional spaces and development of the associated clustering algorithm allow for statistically efficient estimation of the grand mean vector of a population. In the framework of the mapping-based approach to discovering complex cluster structures, we introduced a novel adaptive non-linear data transformation termed Unsupervised Second Order Transformation (USOT). The novelties behind USOT are (a) that it leverages in a unsupervised manner, higher-order co-occurrences between features in boolean data, and (b) that it considers each feature in the context of probabilistic relationships with other features. In addition, USOT has two desirable properties. USOT adaptively selects features that would influence the mapping of a given feature, and preserves the interpretability of dimensions of the transformed space. Experimental results on text corpora and financial time series demonstrate that by leveraging higher-order co-occurrences between features, clustering methods achieved statistically significant improvements in USOT space over the original boolean space." @default.
- W2247407167 created "2016-06-24" @default.
- W2247407167 creator A5007025173 @default.
- W2247407167 creator A5070422112 @default.
- W2247407167 date "2009-01-01" @default.
- W2247407167 modified "2023-09-23" @default.
- W2247407167 title "Variance-based clustering methods and higher order data transformations and their applications" @default.
- W2247407167 cites W1493526108 @default.
- W2247407167 cites W1494730498 @default.
- W2247407167 cites W1560724230 @default.
- W2247407167 cites W1579271636 @default.
- W2247407167 cites W1595613095 @default.
- W2247407167 cites W1604792744 @default.
- W2247407167 cites W1791715974 @default.
- W2247407167 cites W1943383135 @default.
- W2247407167 cites W1965767194 @default.
- W2247407167 cites W1969810123 @default.
- W2247407167 cites W1970866964 @default.
- W2247407167 cites W1971784203 @default.
- W2247407167 cites W1977545325 @default.
- W2247407167 cites W1979244995 @default.
- W2247407167 cites W198953946 @default.
- W2247407167 cites W1994698869 @default.
- W2247407167 cites W2008495066 @default.
- W2247407167 cites W2017102965 @default.
- W2247407167 cites W2022326937 @default.
- W2247407167 cites W2026417691 @default.
- W2247407167 cites W2058881329 @default.
- W2247407167 cites W2064580901 @default.
- W2247407167 cites W2067191022 @default.
- W2247407167 cites W2073759582 @default.
- W2247407167 cites W2076008912 @default.
- W2247407167 cites W2081605725 @default.
- W2247407167 cites W2112653086 @default.
- W2247407167 cites W2124965089 @default.
- W2247407167 cites W2127086485 @default.
- W2247407167 cites W2129089204 @default.
- W2247407167 cites W2129250947 @default.
- W2247407167 cites W2130337399 @default.
- W2247407167 cites W2131904442 @default.
- W2247407167 cites W2135346934 @default.
- W2247407167 cites W2138621811 @default.
- W2247407167 cites W2142070680 @default.
- W2247407167 cites W2147152072 @default.
- W2247407167 cites W2148603752 @default.
- W2247407167 cites W2149107824 @default.
- W2247407167 cites W2150593711 @default.
- W2247407167 cites W2152530124 @default.
- W2247407167 cites W2153104898 @default.
- W2247407167 cites W2156909104 @default.
- W2247407167 cites W2159128898 @default.
- W2247407167 cites W2161985854 @default.
- W2247407167 cites W2162121795 @default.
- W2247407167 cites W2164810648 @default.
- W2247407167 cites W2185904296 @default.
- W2247407167 cites W2612166593 @default.
- W2247407167 cites W2913066018 @default.
- W2247407167 cites W36570767 @default.
- W2247407167 cites W1967673923 @default.
- W2247407167 cites W2954327445 @default.
- W2247407167 doi "https://doi.org/10.7282/t3b27vfq" @default.
- W2247407167 hasPublicationYear "2009" @default.
- W2247407167 type Work @default.
- W2247407167 sameAs 2247407167 @default.
- W2247407167 citedByCount "0" @default.
- W2247407167 crossrefType "journal-article" @default.
- W2247407167 hasAuthorship W2247407167A5007025173 @default.
- W2247407167 hasAuthorship W2247407167A5070422112 @default.
- W2247407167 hasConcept C124101348 @default.
- W2247407167 hasConcept C154945302 @default.
- W2247407167 hasConcept C184509293 @default.
- W2247407167 hasConcept C193143536 @default.
- W2247407167 hasConcept C27964816 @default.
- W2247407167 hasConcept C33704608 @default.
- W2247407167 hasConcept C33923547 @default.
- W2247407167 hasConcept C41008148 @default.
- W2247407167 hasConcept C73555534 @default.
- W2247407167 hasConcept C94641424 @default.
- W2247407167 hasConceptScore W2247407167C124101348 @default.
- W2247407167 hasConceptScore W2247407167C154945302 @default.
- W2247407167 hasConceptScore W2247407167C184509293 @default.
- W2247407167 hasConceptScore W2247407167C193143536 @default.
- W2247407167 hasConceptScore W2247407167C27964816 @default.
- W2247407167 hasConceptScore W2247407167C33704608 @default.
- W2247407167 hasConceptScore W2247407167C33923547 @default.
- W2247407167 hasConceptScore W2247407167C41008148 @default.
- W2247407167 hasConceptScore W2247407167C73555534 @default.
- W2247407167 hasConceptScore W2247407167C94641424 @default.
- W2247407167 hasLocation W22474071671 @default.
- W2247407167 hasOpenAccess W2247407167 @default.
- W2247407167 hasPrimaryLocation W22474071671 @default.
- W2247407167 hasRelatedWork W106647503 @default.
- W2247407167 hasRelatedWork W1520787119 @default.
- W2247407167 hasRelatedWork W1531774733 @default.
- W2247407167 hasRelatedWork W2228595126 @default.
- W2247407167 hasRelatedWork W2398977753 @default.
- W2247407167 hasRelatedWork W2407184026 @default.
- W2247407167 hasRelatedWork W2591536662 @default.
- W2247407167 hasRelatedWork W2889953608 @default.
- W2247407167 hasRelatedWork W2908503379 @default.