Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247462025> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2247462025 endingPage "65" @default.
- W2247462025 startingPage "58" @default.
- W2247462025 abstract "Diabetes mellitus is associated with an increased risk of liver cancer, and these two diseases are among the most common and important causes of morbidity and mortality in Taiwan.To use data mining techniques to develop a model for predicting the development of liver cancer within 6 years of diagnosis with type II diabetes.Data were obtained from the National Health Insurance Research Database (NHIRD) of Taiwan, which covers approximately 22 million people. In this study, we selected patients who were newly diagnosed with type II diabetes during the 2000-2003 periods, with no prior cancer diagnosis. We then used encrypted personal ID to perform data linkage with the cancer registry database to identify whether these patients were diagnosed with liver cancer. Finally, we identified 2060 cases and assigned them to a case group (patients diagnosed with liver cancer after diabetes) and a control group (patients with diabetes but no liver cancer). The risk factors were identified from the literature review and physicians' suggestion, then, chi-square test was conducted on each independent variable (or potential risk factor) for a comparison between patients with liver cancer and those without, those found to be significant were selected as the factors. We subsequently performed data training and testing to construct artificial neural network (ANN) and logistic regression (LR) prediction models. The dataset was randomly divided into 2 groups: a training group and a test group. The training group consisted of 1442 cases (70% of the entire dataset), and the prediction model was developed on the basis of the training group. The remaining 30% (618 cases) were assigned to the test group for model validation.The following 10 variables were used to develop the ANN and LR models: sex, age, alcoholic cirrhosis, nonalcoholic cirrhosis, alcoholic hepatitis, viral hepatitis, other types of chronic hepatitis, alcoholic fatty liver disease, other types of fatty liver disease, and hyperlipidemia. The performance of the ANN was superior to that of LR, according to the sensitivity (0.757), specificity (0.755), and the area under the receiver operating characteristic curve (0.873). After developing the optimal prediction model, we base on this model to construct a web-based application system for liver cancer prediction, which can provide support to physicians during consults with diabetes patients.In the original dataset (n=2060), 33% of diabetes patients were diagnosed with liver cancer (n=515). After using 70% of the original data to training the model and other 30% for testing, the sensitivity and specificity of our model were 0.757 and 0.755, respectively; this means that 75.7% of diabetes patients can be predicted correctly to receive a future liver cancer diagnosis, and 75.5% can be predicted correctly to not be diagnosed with liver cancer. These results reveal that this model can be used as effective predictors of liver cancer for diabetes patients, after discussion with physicians; they also agreed that model can assist physicians to advise potential liver cancer patients and also helpful to decrease the future cost incurred upon cancer treatment." @default.
- W2247462025 created "2016-06-24" @default.
- W2247462025 creator A5003495274 @default.
- W2247462025 creator A5017893670 @default.
- W2247462025 creator A5018173724 @default.
- W2247462025 creator A5032296049 @default.
- W2247462025 creator A5063635370 @default.
- W2247462025 creator A5072710319 @default.
- W2247462025 creator A5090405832 @default.
- W2247462025 date "2016-03-01" @default.
- W2247462025 modified "2023-10-17" @default.
- W2247462025 title "Development of a web-based liver cancer prediction model for type II diabetes patients by using an artificial neural network" @default.
- W2247462025 cites W100883936 @default.
- W2247462025 cites W1863328478 @default.
- W2247462025 cites W1965712234 @default.
- W2247462025 cites W1975897238 @default.
- W2247462025 cites W1976535127 @default.
- W2247462025 cites W1981976602 @default.
- W2247462025 cites W2033339846 @default.
- W2247462025 cites W2039809330 @default.
- W2247462025 cites W2042265219 @default.
- W2247462025 cites W2051060050 @default.
- W2247462025 cites W2056439450 @default.
- W2247462025 cites W2072046031 @default.
- W2247462025 cites W2106787323 @default.
- W2247462025 cites W2121394390 @default.
- W2247462025 cites W2163691729 @default.
- W2247462025 cites W2163886829 @default.
- W2247462025 cites W2186407153 @default.
- W2247462025 cites W1993006198 @default.
- W2247462025 doi "https://doi.org/10.1016/j.cmpb.2015.11.009" @default.
- W2247462025 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26701199" @default.
- W2247462025 hasPublicationYear "2016" @default.
- W2247462025 type Work @default.
- W2247462025 sameAs 2247462025 @default.
- W2247462025 citedByCount "100" @default.
- W2247462025 countsByYear W22474620252016 @default.
- W2247462025 countsByYear W22474620252017 @default.
- W2247462025 countsByYear W22474620252018 @default.
- W2247462025 countsByYear W22474620252019 @default.
- W2247462025 countsByYear W22474620252020 @default.
- W2247462025 countsByYear W22474620252021 @default.
- W2247462025 countsByYear W22474620252022 @default.
- W2247462025 countsByYear W22474620252023 @default.
- W2247462025 crossrefType "journal-article" @default.
- W2247462025 hasAuthorship W2247462025A5003495274 @default.
- W2247462025 hasAuthorship W2247462025A5017893670 @default.
- W2247462025 hasAuthorship W2247462025A5018173724 @default.
- W2247462025 hasAuthorship W2247462025A5032296049 @default.
- W2247462025 hasAuthorship W2247462025A5063635370 @default.
- W2247462025 hasAuthorship W2247462025A5072710319 @default.
- W2247462025 hasAuthorship W2247462025A5090405832 @default.
- W2247462025 hasConcept C119857082 @default.
- W2247462025 hasConcept C121608353 @default.
- W2247462025 hasConcept C126322002 @default.
- W2247462025 hasConcept C134018914 @default.
- W2247462025 hasConcept C143998085 @default.
- W2247462025 hasConcept C151956035 @default.
- W2247462025 hasConcept C2776231280 @default.
- W2247462025 hasConcept C2777180221 @default.
- W2247462025 hasConcept C2778527826 @default.
- W2247462025 hasConcept C41008148 @default.
- W2247462025 hasConcept C50644808 @default.
- W2247462025 hasConcept C555293320 @default.
- W2247462025 hasConcept C71924100 @default.
- W2247462025 hasConceptScore W2247462025C119857082 @default.
- W2247462025 hasConceptScore W2247462025C121608353 @default.
- W2247462025 hasConceptScore W2247462025C126322002 @default.
- W2247462025 hasConceptScore W2247462025C134018914 @default.
- W2247462025 hasConceptScore W2247462025C143998085 @default.
- W2247462025 hasConceptScore W2247462025C151956035 @default.
- W2247462025 hasConceptScore W2247462025C2776231280 @default.
- W2247462025 hasConceptScore W2247462025C2777180221 @default.
- W2247462025 hasConceptScore W2247462025C2778527826 @default.
- W2247462025 hasConceptScore W2247462025C41008148 @default.
- W2247462025 hasConceptScore W2247462025C50644808 @default.
- W2247462025 hasConceptScore W2247462025C555293320 @default.
- W2247462025 hasConceptScore W2247462025C71924100 @default.
- W2247462025 hasLocation W22474620251 @default.
- W2247462025 hasLocation W22474620252 @default.
- W2247462025 hasOpenAccess W2247462025 @default.
- W2247462025 hasPrimaryLocation W22474620251 @default.
- W2247462025 hasRelatedWork W2035380428 @default.
- W2247462025 hasRelatedWork W2121394390 @default.
- W2247462025 hasRelatedWork W2188240762 @default.
- W2247462025 hasRelatedWork W2379392226 @default.
- W2247462025 hasRelatedWork W2381373018 @default.
- W2247462025 hasRelatedWork W2382301224 @default.
- W2247462025 hasRelatedWork W2414852756 @default.
- W2247462025 hasRelatedWork W2419055387 @default.
- W2247462025 hasRelatedWork W3028612550 @default.
- W2247462025 hasRelatedWork W4211071659 @default.
- W2247462025 hasVolume "125" @default.
- W2247462025 isParatext "false" @default.
- W2247462025 isRetracted "false" @default.
- W2247462025 magId "2247462025" @default.
- W2247462025 workType "article" @default.