Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247602019> ?p ?o ?g. }
- W2247602019 endingPage "303" @default.
- W2247602019 startingPage "294" @default.
- W2247602019 abstract "Closed-circuit television inspections of sewer condition deterioration as required for proactive management are expensive and hence limited to portions of a sewer network. The data mining approach presented herein is shown capable of unlocking information contained within inspection records and enhances existing pipe inspection practices currently used in the wastewater industry. Predictive models developed using the random forests algorithm are found capable of predicting individual sewer pipe condition so that uninspected pipes in a sewer network with the greatest likelihood of being in a structurally defective condition state are identified for future rounds of inspection. Complications posed by imbalance between classes common within inspection datasets are overcome by first establishing the classification task in a binary format (where pipes are in either good or bad structural condition) and then using the receiver-operating characteristic (ROC) curve to establish alternative cutoffs for the predicted class probability. The random forests algorithm achieved a stratified test set false negative rate of 18%, false positive rate of 27% and an excellent area under the ROC curve of 0.81 in a case study application to the City of Guelph, Ontario, Canada. The novel inclusion of condition information of pipes attached at either the upstream or downstream manholes of an individual pipe enhances the predictive power for bad pipes representing the minority class of interest (reducing the false negative rate to 11%, reducing the false positive rate to 25% and increasing the area under the ROC curve to 0.85). An area under the ROC curve >0.80 indicates random forests are an “excellent” choice for predicting the condition of individual pipes in a sewer network." @default.
- W2247602019 created "2016-06-24" @default.
- W2247602019 creator A5020099579 @default.
- W2247602019 creator A5045386805 @default.
- W2247602019 date "2014-04-01" @default.
- W2247602019 modified "2023-09-26" @default.
- W2247602019 title "Predicting the structural condition of individual sanitary sewer pipes with random forests" @default.
- W2247602019 cites W1581132942 @default.
- W2247602019 cites W1916216791 @default.
- W2247602019 cites W1964792864 @default.
- W2247602019 cites W1973655329 @default.
- W2247602019 cites W1986527178 @default.
- W2247602019 cites W1990653740 @default.
- W2247602019 cites W2028561228 @default.
- W2247602019 cites W2030139325 @default.
- W2247602019 cites W2034326804 @default.
- W2247602019 cites W2043166122 @default.
- W2247602019 cites W2054615569 @default.
- W2247602019 cites W2065298594 @default.
- W2247602019 cites W2076201204 @default.
- W2247602019 cites W2083344633 @default.
- W2247602019 cites W2129982237 @default.
- W2247602019 cites W2131822674 @default.
- W2247602019 cites W2137818307 @default.
- W2247602019 cites W2148807980 @default.
- W2247602019 cites W2152575748 @default.
- W2247602019 cites W2161548576 @default.
- W2247602019 cites W2911964244 @default.
- W2247602019 cites W429766147 @default.
- W2247602019 cites W4299689471 @default.
- W2247602019 doi "https://doi.org/10.1139/cjce-2013-0431" @default.
- W2247602019 hasPublicationYear "2014" @default.
- W2247602019 type Work @default.
- W2247602019 sameAs 2247602019 @default.
- W2247602019 citedByCount "63" @default.
- W2247602019 countsByYear W22476020192014 @default.
- W2247602019 countsByYear W22476020192015 @default.
- W2247602019 countsByYear W22476020192016 @default.
- W2247602019 countsByYear W22476020192017 @default.
- W2247602019 countsByYear W22476020192018 @default.
- W2247602019 countsByYear W22476020192019 @default.
- W2247602019 countsByYear W22476020192020 @default.
- W2247602019 countsByYear W22476020192021 @default.
- W2247602019 countsByYear W22476020192022 @default.
- W2247602019 countsByYear W22476020192023 @default.
- W2247602019 crossrefType "journal-article" @default.
- W2247602019 hasAuthorship W2247602019A5020099579 @default.
- W2247602019 hasAuthorship W2247602019A5045386805 @default.
- W2247602019 hasConcept C119599485 @default.
- W2247602019 hasConcept C119857082 @default.
- W2247602019 hasConcept C121332964 @default.
- W2247602019 hasConcept C124101348 @default.
- W2247602019 hasConcept C127413603 @default.
- W2247602019 hasConcept C154945302 @default.
- W2247602019 hasConcept C165801399 @default.
- W2247602019 hasConcept C169258074 @default.
- W2247602019 hasConcept C177264268 @default.
- W2247602019 hasConcept C191172861 @default.
- W2247602019 hasConcept C199360897 @default.
- W2247602019 hasConcept C2778217198 @default.
- W2247602019 hasConcept C2778462145 @default.
- W2247602019 hasConcept C31258907 @default.
- W2247602019 hasConcept C41008148 @default.
- W2247602019 hasConcept C58471807 @default.
- W2247602019 hasConcept C62520636 @default.
- W2247602019 hasConcept C95922358 @default.
- W2247602019 hasConceptScore W2247602019C119599485 @default.
- W2247602019 hasConceptScore W2247602019C119857082 @default.
- W2247602019 hasConceptScore W2247602019C121332964 @default.
- W2247602019 hasConceptScore W2247602019C124101348 @default.
- W2247602019 hasConceptScore W2247602019C127413603 @default.
- W2247602019 hasConceptScore W2247602019C154945302 @default.
- W2247602019 hasConceptScore W2247602019C165801399 @default.
- W2247602019 hasConceptScore W2247602019C169258074 @default.
- W2247602019 hasConceptScore W2247602019C177264268 @default.
- W2247602019 hasConceptScore W2247602019C191172861 @default.
- W2247602019 hasConceptScore W2247602019C199360897 @default.
- W2247602019 hasConceptScore W2247602019C2778217198 @default.
- W2247602019 hasConceptScore W2247602019C2778462145 @default.
- W2247602019 hasConceptScore W2247602019C31258907 @default.
- W2247602019 hasConceptScore W2247602019C41008148 @default.
- W2247602019 hasConceptScore W2247602019C58471807 @default.
- W2247602019 hasConceptScore W2247602019C62520636 @default.
- W2247602019 hasConceptScore W2247602019C95922358 @default.
- W2247602019 hasIssue "4" @default.
- W2247602019 hasLocation W22476020191 @default.
- W2247602019 hasOpenAccess W2247602019 @default.
- W2247602019 hasPrimaryLocation W22476020191 @default.
- W2247602019 hasRelatedWork W2020164596 @default.
- W2247602019 hasRelatedWork W2084738911 @default.
- W2247602019 hasRelatedWork W2128017215 @default.
- W2247602019 hasRelatedWork W2167515950 @default.
- W2247602019 hasRelatedWork W2247602019 @default.
- W2247602019 hasRelatedWork W2354526794 @default.
- W2247602019 hasRelatedWork W2801379543 @default.
- W2247602019 hasRelatedWork W3186317317 @default.
- W2247602019 hasRelatedWork W3211481865 @default.
- W2247602019 hasRelatedWork W4245696101 @default.