Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247635670> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2247635670 abstract "In this paper, we present several estimators of the diagonal elements of the inverse of the covariance matrix, called precision matrix, of a sample of independent and identically distributed random vectors. The main focus is on the case of high dimensional vectors having a sparse precision matrix. It is now well understood that when the underlying distribution is Gaussian, the columns of the precision matrix can be estimated independently form one another by solving linear regression problems under sparsity constraints. This approach leads to a computationally efficient strategy for estimating the precision matrix that starts by estimating the regression vectors, then estimates the diagonal entries of the precision matrix and, in a final step, combines these estimators for getting estimators of the off-diagonal entries. While the step of estimating the regression vector has been intensively studied over the past decade, the problem of deriving statistically accurate estimators of the diagonal entries has received much less attention. The goal of the present paper is to fill this gap by presenting four estimators—that seem the most natural ones—of the diagonal entries of the precision matrix and then performing a comprehensive empirical evaluation of these estimators. The estimators under consideration are the residual variance, the relaxed maximum likelihood, the symmetry-enforced maximum likelihood and the penalized maximum likelihood. We show, both theoretically and empirically, that when the aforementioned regression vectors are estimated without error, the symmetry-enforced maximum likelihood estimator has the smallest estimation error. However, in a more realistic setting when the regression vector is estimated by a sparsity-favoring computationally efficient method, the qualities of the estimators become relatively comparable with a slight advantage for the residual variance estimator." @default.
- W2247635670 created "2016-06-24" @default.
- W2247635670 creator A5013297061 @default.
- W2247635670 creator A5038868699 @default.
- W2247635670 date "2016-01-01" @default.
- W2247635670 modified "2023-09-25" @default.
- W2247635670 title "On estimation of the diagonal elements of a sparse precision matrix" @default.
- W2247635670 cites W1508062313 @default.
- W2247635670 cites W1560153690 @default.
- W2247635670 cites W1596877211 @default.
- W2247635670 cites W1862068047 @default.
- W2247635670 cites W1965680834 @default.
- W2247635670 cites W1989727964 @default.
- W2247635670 cites W2001619934 @default.
- W2247635670 cites W2017927472 @default.
- W2247635670 cites W2051605894 @default.
- W2247635670 cites W2081746825 @default.
- W2247635670 cites W2124541940 @default.
- W2247635670 cites W2132555912 @default.
- W2247635670 cites W2135046866 @default.
- W2247635670 cites W2148607939 @default.
- W2247635670 cites W2154972590 @default.
- W2247635670 cites W2169528473 @default.
- W2247635670 cites W2952248799 @default.
- W2247635670 cites W3098834468 @default.
- W2247635670 cites W3099652024 @default.
- W2247635670 cites W3101651037 @default.
- W2247635670 cites W3103221895 @default.
- W2247635670 cites W3105340263 @default.
- W2247635670 cites W3121832289 @default.
- W2247635670 cites W4247571494 @default.
- W2247635670 cites W4293508270 @default.
- W2247635670 doi "https://doi.org/10.1214/16-ejs1148" @default.
- W2247635670 hasPublicationYear "2016" @default.
- W2247635670 type Work @default.
- W2247635670 sameAs 2247635670 @default.
- W2247635670 citedByCount "4" @default.
- W2247635670 countsByYear W22476356702019 @default.
- W2247635670 countsByYear W22476356702022 @default.
- W2247635670 countsByYear W22476356702023 @default.
- W2247635670 crossrefType "journal-article" @default.
- W2247635670 hasAuthorship W2247635670A5013297061 @default.
- W2247635670 hasAuthorship W2247635670A5038868699 @default.
- W2247635670 hasBestOaLocation W22476356701 @default.
- W2247635670 hasConcept C105795698 @default.
- W2247635670 hasConcept C106487976 @default.
- W2247635670 hasConcept C113313756 @default.
- W2247635670 hasConcept C11413529 @default.
- W2247635670 hasConcept C121332964 @default.
- W2247635670 hasConcept C126255220 @default.
- W2247635670 hasConcept C130367717 @default.
- W2247635670 hasConcept C159985019 @default.
- W2247635670 hasConcept C163716315 @default.
- W2247635670 hasConcept C185142706 @default.
- W2247635670 hasConcept C185429906 @default.
- W2247635670 hasConcept C192562407 @default.
- W2247635670 hasConcept C2524010 @default.
- W2247635670 hasConcept C28826006 @default.
- W2247635670 hasConcept C33923547 @default.
- W2247635670 hasConcept C62520636 @default.
- W2247635670 hasConceptScore W2247635670C105795698 @default.
- W2247635670 hasConceptScore W2247635670C106487976 @default.
- W2247635670 hasConceptScore W2247635670C113313756 @default.
- W2247635670 hasConceptScore W2247635670C11413529 @default.
- W2247635670 hasConceptScore W2247635670C121332964 @default.
- W2247635670 hasConceptScore W2247635670C126255220 @default.
- W2247635670 hasConceptScore W2247635670C130367717 @default.
- W2247635670 hasConceptScore W2247635670C159985019 @default.
- W2247635670 hasConceptScore W2247635670C163716315 @default.
- W2247635670 hasConceptScore W2247635670C185142706 @default.
- W2247635670 hasConceptScore W2247635670C185429906 @default.
- W2247635670 hasConceptScore W2247635670C192562407 @default.
- W2247635670 hasConceptScore W2247635670C2524010 @default.
- W2247635670 hasConceptScore W2247635670C28826006 @default.
- W2247635670 hasConceptScore W2247635670C33923547 @default.
- W2247635670 hasConceptScore W2247635670C62520636 @default.
- W2247635670 hasIssue "1" @default.
- W2247635670 hasLocation W22476356701 @default.
- W2247635670 hasLocation W22476356702 @default.
- W2247635670 hasLocation W22476356703 @default.
- W2247635670 hasOpenAccess W2247635670 @default.
- W2247635670 hasPrimaryLocation W22476356701 @default.
- W2247635670 hasRelatedWork W1516708947 @default.
- W2247635670 hasRelatedWork W1633562754 @default.
- W2247635670 hasRelatedWork W2012924800 @default.
- W2247635670 hasRelatedWork W2033753750 @default.
- W2247635670 hasRelatedWork W2064842377 @default.
- W2247635670 hasRelatedWork W2362081477 @default.
- W2247635670 hasRelatedWork W2363617708 @default.
- W2247635670 hasRelatedWork W3005675733 @default.
- W2247635670 hasRelatedWork W3103812883 @default.
- W2247635670 hasRelatedWork W3121847331 @default.
- W2247635670 hasVolume "10" @default.
- W2247635670 isParatext "false" @default.
- W2247635670 isRetracted "false" @default.
- W2247635670 magId "2247635670" @default.
- W2247635670 workType "article" @default.