Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247650022> ?p ?o ?g. }
- W2247650022 abstract "Mitochondrial function plays an important role in the regulation of apoptosis. Additionally, defects in this function are believed to be related to many common diseases of aging. In the presence of one of these diseases, mitochondrial function undergoes measurable disturbance accompanied by drastic morphological alterations, suggesting that a correlation exists between mitochondrial structure and functionality. However, the interpretation and measurement of the architectural organization of mitochondria depend heavily upon the availability of good software tools for filtering, segmenting, extracting, measuring, and classifying the features of interest. In this work, we develop mathematically sound and computationally robust partial differential equation-based algorithms for the reduction of noise, and the enhancement of structural information in images of mitochondria obtained via electron microscope tomography.We design a multi-stage approach for extracting the mitochondrial structures from electron tomograms. For the noise reduction phase of the pipeline, we devise a structure enhancing anisotropic nonlinear diffusion model. It is based on an improved image smoothing and edge detection technique that employs a combination of nonlinear diffusion and bilateral filter. The eigenvectors of the bilaterally smoothed structure tensor form the basis for the diffusion tensor, where the eigenvalues are prescribed so that there is a smooth transition, rather than a hard threshold switching, of the diffusion characteristics among image areas of differing structural properties. The method is equipped with a new and simple diffusion stopping criterion, derived from the second derivative of the correlation between the noisy image and filtered image. After the noise reduction phase, we synthetically enhance the contrast of the image by applying the confidence connected segmentation algorithm. Following that, structures are extracted using a level set formulation which includes a term that drives the level set function toward a signed distance function. The extracted contours are rendered as a three-dimensional image model. The results are very encouraging and this computational approach is potentially much faster, and is more robust and unbiased than hand-tracing of structures.We develop an adaptive total variation-based model with morphologic convection and anisotropic diffusion, and devise a user-independent method for choosing all the parameters in the model. We estimate the unknown noise level via a simple approximation that uses convolution with a Gaussian kernel. We implement a pixel-wise parameter in the forcing-term that allows more diffusion in homogeneous areas, and it restricts the diffusion in areas with higher probability of belonging to edges. This parameter also enables more diffusion in the early stages of the scale-marching process and discourages diffusion as iterations evolve. For the anisotropic diffusion process, we implement a diffusion tensor that adapts to the underlying structure of the image by applying a range of diffusion processes in each direction. The proposed model applies diffusion methods consistent with either the total variation-norm or the Euclidean-norm, or an interpolation between these two norms. We also implement an adaptive time-step that helps with the stability and the speed of the total variation-based restoration process. The adaptive time-step is smaller in regions with high gradients and is larger in regions with low gradients. The results obtained by applying this model to noisy images are comparatively superior in both speed and quality of the restoration.We propose a homomorphic total variation-based algorithm for the reduction of the multiplicative noise present in low-dose electron microscope imagery. In the implementation of this model we employ some of the aforementioned adaptive parameters that we devise for the adaptive total variation-based model. We compare the performance of the proposed model to that of a total variation-based algorithm that was originally designed for the removal of multiplicative noise. The resulting images after applying both techniques are very similar in quality. Ours is the first implementation of this method within the context of electron microscope tomography." @default.
- W2247650022 created "2016-06-24" @default.
- W2247650022 creator A5008736513 @default.
- W2247650022 date "2009-01-01" @default.
- W2247650022 modified "2023-09-27" @default.
- W2247650022 title "Pde-based image and structure enhancement for electron tomography of mitochondria" @default.
- W2247650022 cites W141692783 @default.
- W2247650022 cites W1480930461 @default.
- W2247650022 cites W1486996222 @default.
- W2247650022 cites W1488881187 @default.
- W2247650022 cites W1506388882 @default.
- W2247650022 cites W1515247384 @default.
- W2247650022 cites W1517149666 @default.
- W2247650022 cites W1543214292 @default.
- W2247650022 cites W1545934923 @default.
- W2247650022 cites W1546929746 @default.
- W2247650022 cites W1549033379 @default.
- W2247650022 cites W1567227180 @default.
- W2247650022 cites W1568577839 @default.
- W2247650022 cites W1570897781 @default.
- W2247650022 cites W1572001371 @default.
- W2247650022 cites W1574741007 @default.
- W2247650022 cites W1575031733 @default.
- W2247650022 cites W1579238192 @default.
- W2247650022 cites W1585317948 @default.
- W2247650022 cites W1585413888 @default.
- W2247650022 cites W158580009 @default.
- W2247650022 cites W1585834753 @default.
- W2247650022 cites W1600455797 @default.
- W2247650022 cites W1601642700 @default.
- W2247650022 cites W1603313343 @default.
- W2247650022 cites W1621136053 @default.
- W2247650022 cites W1648369087 @default.
- W2247650022 cites W1676212501 @default.
- W2247650022 cites W167706943 @default.
- W2247650022 cites W1745634660 @default.
- W2247650022 cites W1798731098 @default.
- W2247650022 cites W1883541086 @default.
- W2247650022 cites W1963743024 @default.
- W2247650022 cites W1964206050 @default.
- W2247650022 cites W1966539065 @default.
- W2247650022 cites W1967192561 @default.
- W2247650022 cites W1967243740 @default.
- W2247650022 cites W1967303488 @default.
- W2247650022 cites W1967512044 @default.
- W2247650022 cites W1967737962 @default.
- W2247650022 cites W1969128629 @default.
- W2247650022 cites W1969899894 @default.
- W2247650022 cites W1970163512 @default.
- W2247650022 cites W1974057480 @default.
- W2247650022 cites W1975227291 @default.
- W2247650022 cites W1975712440 @default.
- W2247650022 cites W1975836370 @default.
- W2247650022 cites W1976226379 @default.
- W2247650022 cites W1977946246 @default.
- W2247650022 cites W1979168756 @default.
- W2247650022 cites W1979646836 @default.
- W2247650022 cites W1981372852 @default.
- W2247650022 cites W1983923266 @default.
- W2247650022 cites W1985588167 @default.
- W2247650022 cites W1985597303 @default.
- W2247650022 cites W1987408796 @default.
- W2247650022 cites W1989893875 @default.
- W2247650022 cites W1990919278 @default.
- W2247650022 cites W1993276364 @default.
- W2247650022 cites W1994054260 @default.
- W2247650022 cites W1994637856 @default.
- W2247650022 cites W1996330065 @default.
- W2247650022 cites W1997820657 @default.
- W2247650022 cites W1998999283 @default.
- W2247650022 cites W1999244633 @default.
- W2247650022 cites W1999804115 @default.
- W2247650022 cites W2001024934 @default.
- W2247650022 cites W2002083967 @default.
- W2247650022 cites W2002547620 @default.
- W2247650022 cites W2003370853 @default.
- W2247650022 cites W2003783733 @default.
- W2247650022 cites W2003858213 @default.
- W2247650022 cites W2005089986 @default.
- W2247650022 cites W2005601437 @default.
- W2247650022 cites W2006158980 @default.
- W2247650022 cites W2006420963 @default.
- W2247650022 cites W2008014451 @default.
- W2247650022 cites W2008590430 @default.
- W2247650022 cites W2010557690 @default.
- W2247650022 cites W2011181254 @default.
- W2247650022 cites W2011695814 @default.
- W2247650022 cites W2015999006 @default.
- W2247650022 cites W2016367858 @default.
- W2247650022 cites W2016612145 @default.
- W2247650022 cites W2017665991 @default.
- W2247650022 cites W2018491322 @default.
- W2247650022 cites W2018561319 @default.
- W2247650022 cites W2018986990 @default.
- W2247650022 cites W2019912800 @default.
- W2247650022 cites W2020510568 @default.
- W2247650022 cites W2021167319 @default.
- W2247650022 cites W2022020496 @default.
- W2247650022 cites W2022735534 @default.
- W2247650022 cites W2022923913 @default.