Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247659183> ?p ?o ?g. }
- W2247659183 abstract "By application of the theory for second-order linear differential equations with two turning points developed in [Olver F.W.J., Philos. Trans. Roy. Soc. London Ser. A 278 (1975), 137-174], uniform asymptotic approximations are obtained in the first part of this paper for the Lam'e and Mathieu functions with a large real parameter. These approximations are expressed in terms of parabolic cylinder functions, and are uniformly valid in their respective real open intervals. In all cases explicit bounds are supplied for the error terms associated with the approximations. Approximations are also obtained for the large order behaviour for the respective eigenvalues. We restrict ourselves to a two term uniform approximation. Theoretically more terms in these approximations could be computed, but the coefficients would be very complicated. In the second part of this paper we use a simplified method to obtain uniform asymptotic expansions for these functions. The coefficients are just polynomials and satisfy simple recurrence relations. The price to pay is that these asymptotic expansions hold only in a shrinking interval as their respective parameters become large; this interval however encapsulates all the interesting oscillatory behaviour of the functions. This simplified method also gives many terms in asymptotic expansions for these eigenvalues, derived simultaneously with the coefficients in the function expansions. We provide rigorous realistic error bounds for the function expansions when truncated and order estimates for the error when the eigenvalue expansions are truncated. With this paper we confirm that many of the formal results in the literature are correct." @default.
- W2247659183 created "2016-06-24" @default.
- W2247659183 creator A5006465123 @default.
- W2247659183 creator A5085474113 @default.
- W2247659183 date "2015-11-24" @default.
- W2247659183 modified "2023-09-30" @default.
- W2247659183 title "Rigorous Asymptotics for the Lamé and Mathieu Functions and their Respective Eigenvalues with a Large Parameter" @default.
- W2247659183 cites W13073111 @default.
- W2247659183 cites W1578004187 @default.
- W2247659183 cites W191204234 @default.
- W2247659183 cites W1975297940 @default.
- W2247659183 cites W2003115626 @default.
- W2247659183 cites W2019393562 @default.
- W2247659183 cites W2039343706 @default.
- W2247659183 cites W2042785028 @default.
- W2247659183 cites W2057817591 @default.
- W2247659183 cites W2067266636 @default.
- W2247659183 cites W2086720809 @default.
- W2247659183 cites W2094867256 @default.
- W2247659183 cites W2102591969 @default.
- W2247659183 cites W2209000373 @default.
- W2247659183 cites W2218716562 @default.
- W2247659183 cites W2315477462 @default.
- W2247659183 cites W2335872485 @default.
- W2247659183 cites W2468369930 @default.
- W2247659183 cites W2473137839 @default.
- W2247659183 cites W608102083 @default.
- W2247659183 cites W654430102 @default.
- W2247659183 doi "https://doi.org/10.3842/sigma.2015.095" @default.
- W2247659183 hasPublicationYear "2015" @default.
- W2247659183 type Work @default.
- W2247659183 sameAs 2247659183 @default.
- W2247659183 citedByCount "2" @default.
- W2247659183 countsByYear W22476591832018 @default.
- W2247659183 countsByYear W22476591832020 @default.
- W2247659183 crossrefType "journal-article" @default.
- W2247659183 hasAuthorship W2247659183A5006465123 @default.
- W2247659183 hasAuthorship W2247659183A5085474113 @default.
- W2247659183 hasBestOaLocation W22476591831 @default.
- W2247659183 hasConcept C10138342 @default.
- W2247659183 hasConcept C111472728 @default.
- W2247659183 hasConcept C114614502 @default.
- W2247659183 hasConcept C11683690 @default.
- W2247659183 hasConcept C117148685 @default.
- W2247659183 hasConcept C121332964 @default.
- W2247659183 hasConcept C134306372 @default.
- W2247659183 hasConcept C138885662 @default.
- W2247659183 hasConcept C13982400 @default.
- W2247659183 hasConcept C14036430 @default.
- W2247659183 hasConcept C157097347 @default.
- W2247659183 hasConcept C158693339 @default.
- W2247659183 hasConcept C162324750 @default.
- W2247659183 hasConcept C182306322 @default.
- W2247659183 hasConcept C193386753 @default.
- W2247659183 hasConcept C2778067643 @default.
- W2247659183 hasConcept C2780586882 @default.
- W2247659183 hasConcept C28826006 @default.
- W2247659183 hasConcept C33923547 @default.
- W2247659183 hasConcept C62520636 @default.
- W2247659183 hasConcept C78045399 @default.
- W2247659183 hasConcept C78458016 @default.
- W2247659183 hasConcept C86803240 @default.
- W2247659183 hasConcept C89407435 @default.
- W2247659183 hasConceptScore W2247659183C10138342 @default.
- W2247659183 hasConceptScore W2247659183C111472728 @default.
- W2247659183 hasConceptScore W2247659183C114614502 @default.
- W2247659183 hasConceptScore W2247659183C11683690 @default.
- W2247659183 hasConceptScore W2247659183C117148685 @default.
- W2247659183 hasConceptScore W2247659183C121332964 @default.
- W2247659183 hasConceptScore W2247659183C134306372 @default.
- W2247659183 hasConceptScore W2247659183C138885662 @default.
- W2247659183 hasConceptScore W2247659183C13982400 @default.
- W2247659183 hasConceptScore W2247659183C14036430 @default.
- W2247659183 hasConceptScore W2247659183C157097347 @default.
- W2247659183 hasConceptScore W2247659183C158693339 @default.
- W2247659183 hasConceptScore W2247659183C162324750 @default.
- W2247659183 hasConceptScore W2247659183C182306322 @default.
- W2247659183 hasConceptScore W2247659183C193386753 @default.
- W2247659183 hasConceptScore W2247659183C2778067643 @default.
- W2247659183 hasConceptScore W2247659183C2780586882 @default.
- W2247659183 hasConceptScore W2247659183C28826006 @default.
- W2247659183 hasConceptScore W2247659183C33923547 @default.
- W2247659183 hasConceptScore W2247659183C62520636 @default.
- W2247659183 hasConceptScore W2247659183C78045399 @default.
- W2247659183 hasConceptScore W2247659183C78458016 @default.
- W2247659183 hasConceptScore W2247659183C86803240 @default.
- W2247659183 hasConceptScore W2247659183C89407435 @default.
- W2247659183 hasLocation W22476591831 @default.
- W2247659183 hasLocation W22476591832 @default.
- W2247659183 hasLocation W22476591833 @default.
- W2247659183 hasLocation W22476591834 @default.
- W2247659183 hasOpenAccess W2247659183 @default.
- W2247659183 hasPrimaryLocation W22476591831 @default.
- W2247659183 hasRelatedWork W1494322701 @default.
- W2247659183 hasRelatedWork W2006824130 @default.
- W2247659183 hasRelatedWork W2029165143 @default.
- W2247659183 hasRelatedWork W2041306459 @default.
- W2247659183 hasRelatedWork W221013995 @default.
- W2247659183 hasRelatedWork W2247659183 @default.
- W2247659183 hasRelatedWork W2377654403 @default.