Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247684355> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W2247684355 abstract "Periodically perforated sheets(PS) are ubiquitous in nature as well as in engineered artifacts developed for aerospace, automotive, marine, nuclear and structural applications. PS are indispensable for saving weight and cost for aircraft; for enhancing safety and integrity of heat exchangers used in nuclear and thermal power stations. Ancient PS grills and lattice frames dating back to 1000 BC continue to inspire contemporary art and architecture, buildings and furniture. PS design and analysis, however, is a complex affair stemming from the inherent configurational anisotropy induced by periodicity. In addition, complex boundary conditions complicate the analysis. Unlike atoms in crystalline media, both shape and periodicity of perforations control this anisotropic nature. This thesis explores theoretical and numerical strategies for evaluating the effective anisotropic elastic moduli of PS. Following an experimental prelude for visualizing the PS stress field in a photoelastic sheet and a brief review of PS theory, this thesis proposes a novel theoretical numerical hybrid method for determining the Airy stress function constants. The proposed hybrid method can be exploited experimentally using automated vision based imaging technologies to measure the boundary displacements noninvasively. For determining the Airy constants periodic boundary conditions to the unit cell are applied, the displacement components around the PS hole boundary are obtained using FEM. Using these constants the PS stress field is reconstructed to assess the efficacy of the proposed hybrid method. It is observed that in general while the actual and the reconstructed stress fields agree reasonably well, more refined boundary data obtained either numerically or experimentally can enhance the accuracy further. The thesis then makes an extensive presentation of anisotropic moduli in a variety of PS designs configured on rectangular or square layouts. Conventional as well as some exotic patterns with cusps and satellite holes are examined, and the results are presented graphically to aid the designer. Finally, some special topics pertaining PS design and analysis are discussed to help overcome the inherent limitations of solutions based on applying periodic boundary conditions. In this vein, strategies for achieving a functionally graded PS are presented by altering the pitch and hole size. These strategies assume importance near boundaries as well as near concentrated forces inducing stress gradients. Other special topics include the applicability of tensor transformation rule to PS anisotropy. The effective bulk modulus which remains a scalar invariant is exploited to assess the validity of tensor transformation in a square PS. The rule of mixture widely used in homogenization of composite media is also discussed briefly. Thus, this thesis makes an attempt to demonstrate the power of blending micromechanics with experiments and FEM to aid in PS design and analysis." @default.
- W2247684355 created "2016-06-24" @default.
- W2247684355 creator A5053281065 @default.
- W2247684355 date "2011-07-01" @default.
- W2247684355 modified "2023-09-24" @default.
- W2247684355 title "Periodically Perforated Sheets : Design And analysis" @default.
- W2247684355 hasPublicationYear "2011" @default.
- W2247684355 type Work @default.
- W2247684355 sameAs 2247684355 @default.
- W2247684355 citedByCount "0" @default.
- W2247684355 crossrefType "dissertation" @default.
- W2247684355 hasAuthorship W2247684355A5053281065 @default.
- W2247684355 hasConcept C107551265 @default.
- W2247684355 hasConcept C120665830 @default.
- W2247684355 hasConcept C121332964 @default.
- W2247684355 hasConcept C127413603 @default.
- W2247684355 hasConcept C134306372 @default.
- W2247684355 hasConcept C135628077 @default.
- W2247684355 hasConcept C138885662 @default.
- W2247684355 hasConcept C15744967 @default.
- W2247684355 hasConcept C182310444 @default.
- W2247684355 hasConcept C192562407 @default.
- W2247684355 hasConcept C21036866 @default.
- W2247684355 hasConcept C29660869 @default.
- W2247684355 hasConcept C33923547 @default.
- W2247684355 hasConcept C41008148 @default.
- W2247684355 hasConcept C41895202 @default.
- W2247684355 hasConcept C542102704 @default.
- W2247684355 hasConcept C57879066 @default.
- W2247684355 hasConcept C62354387 @default.
- W2247684355 hasConcept C66938386 @default.
- W2247684355 hasConcept C78519656 @default.
- W2247684355 hasConcept C85725439 @default.
- W2247684355 hasConceptScore W2247684355C107551265 @default.
- W2247684355 hasConceptScore W2247684355C120665830 @default.
- W2247684355 hasConceptScore W2247684355C121332964 @default.
- W2247684355 hasConceptScore W2247684355C127413603 @default.
- W2247684355 hasConceptScore W2247684355C134306372 @default.
- W2247684355 hasConceptScore W2247684355C135628077 @default.
- W2247684355 hasConceptScore W2247684355C138885662 @default.
- W2247684355 hasConceptScore W2247684355C15744967 @default.
- W2247684355 hasConceptScore W2247684355C182310444 @default.
- W2247684355 hasConceptScore W2247684355C192562407 @default.
- W2247684355 hasConceptScore W2247684355C21036866 @default.
- W2247684355 hasConceptScore W2247684355C29660869 @default.
- W2247684355 hasConceptScore W2247684355C33923547 @default.
- W2247684355 hasConceptScore W2247684355C41008148 @default.
- W2247684355 hasConceptScore W2247684355C41895202 @default.
- W2247684355 hasConceptScore W2247684355C542102704 @default.
- W2247684355 hasConceptScore W2247684355C57879066 @default.
- W2247684355 hasConceptScore W2247684355C62354387 @default.
- W2247684355 hasConceptScore W2247684355C66938386 @default.
- W2247684355 hasConceptScore W2247684355C78519656 @default.
- W2247684355 hasConceptScore W2247684355C85725439 @default.
- W2247684355 hasLocation W22476843551 @default.
- W2247684355 hasOpenAccess W2247684355 @default.
- W2247684355 hasPrimaryLocation W22476843551 @default.
- W2247684355 hasRelatedWork W151564841 @default.
- W2247684355 hasRelatedWork W1674275190 @default.
- W2247684355 hasRelatedWork W1999043104 @default.
- W2247684355 hasRelatedWork W2032813041 @default.
- W2247684355 hasRelatedWork W2067138032 @default.
- W2247684355 hasRelatedWork W2096715148 @default.
- W2247684355 hasRelatedWork W2101484923 @default.
- W2247684355 hasRelatedWork W2595226262 @default.
- W2247684355 hasRelatedWork W2802246758 @default.
- W2247684355 hasRelatedWork W2921927050 @default.
- W2247684355 hasRelatedWork W2985189680 @default.
- W2247684355 hasRelatedWork W2995213202 @default.
- W2247684355 hasRelatedWork W301648966 @default.
- W2247684355 hasRelatedWork W3043810529 @default.
- W2247684355 hasRelatedWork W3046298980 @default.
- W2247684355 hasRelatedWork W3099026977 @default.
- W2247684355 hasRelatedWork W3112724970 @default.
- W2247684355 hasRelatedWork W3149673195 @default.
- W2247684355 hasRelatedWork W796199505 @default.
- W2247684355 hasRelatedWork W837885388 @default.
- W2247684355 isParatext "false" @default.
- W2247684355 isRetracted "false" @default.
- W2247684355 magId "2247684355" @default.
- W2247684355 workType "dissertation" @default.