Matches in SemOpenAlex for { <https://semopenalex.org/work/W2247886904> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2247886904 abstract "Abductive explanation has been formalized in AI as the process of searching for a set of assumptions that can prove a given observation. A basic problem which naturally arises is that there may be many different possible sets available. Thus, some preferential ordering on the explanations is necessary to precisely determine which one is best. Unfortunately, any model with sufficient representational power is in general NP-hard.Causal trees and scAND/ scOR graphs are among the most commonly used for representing causal knowledge. Consequently, finding a best explanation has been treated as some heuristic search through the graph. However, this approach exhibits an expected exponential run-time growth rate.In this thesis, we present a new approach to modeling abductive reasoning which admits an extremely efficient implementation. We treat the problem in terms of constrained optimization instead of graph traversal. Our approach models knowledge using linear constraints and finds a best explanation by optimizing some measure within these constraints. Although finding the best explanation remains NP-hard, our approach allows us to utilize the highly efficient tools developed in operations research. Such tools as the Simplex method and Karmarkar's projective scaling algorithm form the foundations for the practical realization of our approach. Experimental results strongly indicate that our linear constraint satisfaction approach is quite promising. Studies comparing our approach against heuristic search techniques has shown our approach to be superior in both time and space, and actually exhibiting an expected polynomial run-time growth rate.Our goal is to show that our framework is both flexible and representationally powerful. We can model both cost-based abduction and Bayesian networks. Furthermore, it is possible for us to handle difficult problems such as alternative explanations, continuous random variables, consistency, partial covering and cyclicity which are commonly encountered in abductive (diagnostic) domains." @default.
- W2247886904 created "2016-06-24" @default.
- W2247886904 creator A5030368686 @default.
- W2247886904 date "1992-01-01" @default.
- W2247886904 modified "2023-09-24" @default.
- W2247886904 title "A Linear Constraint Satisfaction Approach for Abductive Reasoning" @default.
- W2247886904 hasPublicationYear "1992" @default.
- W2247886904 type Work @default.
- W2247886904 sameAs 2247886904 @default.
- W2247886904 citedByCount "0" @default.
- W2247886904 crossrefType "journal-article" @default.
- W2247886904 hasAuthorship W2247886904A5030368686 @default.
- W2247886904 hasConcept C11413529 @default.
- W2247886904 hasConcept C126255220 @default.
- W2247886904 hasConcept C140745168 @default.
- W2247886904 hasConcept C154945302 @default.
- W2247886904 hasConcept C166088908 @default.
- W2247886904 hasConcept C173801870 @default.
- W2247886904 hasConcept C199622910 @default.
- W2247886904 hasConcept C311688 @default.
- W2247886904 hasConcept C33923547 @default.
- W2247886904 hasConcept C41008148 @default.
- W2247886904 hasConcept C44616089 @default.
- W2247886904 hasConcept C49937458 @default.
- W2247886904 hasConcept C80444323 @default.
- W2247886904 hasConceptScore W2247886904C11413529 @default.
- W2247886904 hasConceptScore W2247886904C126255220 @default.
- W2247886904 hasConceptScore W2247886904C140745168 @default.
- W2247886904 hasConceptScore W2247886904C154945302 @default.
- W2247886904 hasConceptScore W2247886904C166088908 @default.
- W2247886904 hasConceptScore W2247886904C173801870 @default.
- W2247886904 hasConceptScore W2247886904C199622910 @default.
- W2247886904 hasConceptScore W2247886904C311688 @default.
- W2247886904 hasConceptScore W2247886904C33923547 @default.
- W2247886904 hasConceptScore W2247886904C41008148 @default.
- W2247886904 hasConceptScore W2247886904C44616089 @default.
- W2247886904 hasConceptScore W2247886904C49937458 @default.
- W2247886904 hasConceptScore W2247886904C80444323 @default.
- W2247886904 hasLocation W22478869041 @default.
- W2247886904 hasOpenAccess W2247886904 @default.
- W2247886904 hasPrimaryLocation W22478869041 @default.
- W2247886904 hasRelatedWork W1531243872 @default.
- W2247886904 hasRelatedWork W1587481346 @default.
- W2247886904 hasRelatedWork W1709155369 @default.
- W2247886904 hasRelatedWork W19171709 @default.
- W2247886904 hasRelatedWork W2182740669 @default.
- W2247886904 hasRelatedWork W2263562125 @default.
- W2247886904 hasRelatedWork W2397185625 @default.
- W2247886904 hasRelatedWork W2473453452 @default.
- W2247886904 hasRelatedWork W2478464795 @default.
- W2247886904 hasRelatedWork W2550948552 @default.
- W2247886904 hasRelatedWork W2570472109 @default.
- W2247886904 hasRelatedWork W2603267290 @default.
- W2247886904 hasRelatedWork W2902934778 @default.
- W2247886904 hasRelatedWork W2903041470 @default.
- W2247886904 hasRelatedWork W2911452516 @default.
- W2247886904 hasRelatedWork W2913100861 @default.
- W2247886904 hasRelatedWork W2983539546 @default.
- W2247886904 hasRelatedWork W3013899369 @default.
- W2247886904 hasRelatedWork W3185200786 @default.
- W2247886904 hasRelatedWork W3214458206 @default.
- W2247886904 isParatext "false" @default.
- W2247886904 isRetracted "false" @default.
- W2247886904 magId "2247886904" @default.
- W2247886904 workType "article" @default.