Matches in SemOpenAlex for { <https://semopenalex.org/work/W2248048385> ?p ?o ?g. }
Showing items 1 to 61 of
61
with 100 items per page.
- W2248048385 endingPage "190" @default.
- W2248048385 startingPage "165" @default.
- W2248048385 abstract "Let F denote a totally real number field, and let K/F denote a totally imaginary quadratic extension. We fix an automorphic cuspidal representation π of GL2 (F ), and a finite order Hecke character χ of K . Thus χ is a representation of GL1 (K ). Under certain hypotheses, it is known that the central critical value L(π ⊗ χ, 1/2) is algebraic up to a known transcendental factor. Explicit formulae for this value have been given by a number of authors, notably Gross, Waldspurger, and Zhang. Essentially, the work of Gross and Zhang shows that this value is given by the height of a certain CM divisor on a suitable space, while the work of Waldspurger gives a criterion for nonvanishing of this value in terms of a certain linear functional arising from representation theory, and a formula in terms of torus integrals on a quaternion algebra. Our goal in this article is to explicate the connections between these works, and to provide a bridge between the general representation-theoretic framework described by Gross (see his article [Gro] in this volume) and the theorems of Zhang [Zha01a] and Waldspurger [Wal85]. We want to point out that the formula we will discuss has numerous applications to arithmetic and Iwasawa theory (see [BD96] and its various sequels). We will therefore attempt to formulate the representation-theoretic results in terms that are familiar to number theorists. We will not however discuss any arithmetic applications directly – the reader will find some of these applications elsewhere in this volume. Needless to say, the present work is mostly expository. The ideas are largely drawn from the papers [Gro87], [Gro], [Wal85], [Zha01a]. However, the organization here is perhaps novel. Our main contribution is given in Theorem 6.4. While the ingredients in this theo-" @default.
- W2248048385 created "2016-06-24" @default.
- W2248048385 creator A5063751719 @default.
- W2248048385 date "2004-06-21" @default.
- W2248048385 modified "2023-10-17" @default.
- W2248048385 title "Special Value Formulae for Rankin L-Functions" @default.
- W2248048385 cites W1449605143 @default.
- W2248048385 cites W1492798315 @default.
- W2248048385 cites W1571876689 @default.
- W2248048385 cites W1590252182 @default.
- W2248048385 cites W1968007235 @default.
- W2248048385 cites W2055584616 @default.
- W2248048385 cites W2083946017 @default.
- W2248048385 cites W2085783307 @default.
- W2248048385 cites W2115891152 @default.
- W2248048385 cites W2166435158 @default.
- W2248048385 cites W2316764719 @default.
- W2248048385 cites W2329367686 @default.
- W2248048385 cites W2335280287 @default.
- W2248048385 cites W2506527245 @default.
- W2248048385 cites W2619863403 @default.
- W2248048385 cites W382442640 @default.
- W2248048385 cites W62210103 @default.
- W2248048385 cites W2058762163 @default.
- W2248048385 cites W3046164673 @default.
- W2248048385 doi "https://doi.org/10.1017/cbo9780511756375.007" @default.
- W2248048385 hasPublicationYear "2004" @default.
- W2248048385 type Work @default.
- W2248048385 sameAs 2248048385 @default.
- W2248048385 citedByCount "9" @default.
- W2248048385 countsByYear W22480483852012 @default.
- W2248048385 countsByYear W22480483852016 @default.
- W2248048385 crossrefType "book-chapter" @default.
- W2248048385 hasAuthorship W2248048385A5063751719 @default.
- W2248048385 hasBestOaLocation W22480483852 @default.
- W2248048385 hasConcept C105795698 @default.
- W2248048385 hasConcept C2776291640 @default.
- W2248048385 hasConcept C33923547 @default.
- W2248048385 hasConceptScore W2248048385C105795698 @default.
- W2248048385 hasConceptScore W2248048385C2776291640 @default.
- W2248048385 hasConceptScore W2248048385C33923547 @default.
- W2248048385 hasLocation W22480483851 @default.
- W2248048385 hasLocation W22480483852 @default.
- W2248048385 hasOpenAccess W2248048385 @default.
- W2248048385 hasPrimaryLocation W22480483851 @default.
- W2248048385 hasRelatedWork W1974891317 @default.
- W2248048385 hasRelatedWork W2007596026 @default.
- W2248048385 hasRelatedWork W2044189972 @default.
- W2248048385 hasRelatedWork W2069964982 @default.
- W2248048385 hasRelatedWork W2071622573 @default.
- W2248048385 hasRelatedWork W2156788334 @default.
- W2248048385 hasRelatedWork W2313400459 @default.
- W2248048385 hasRelatedWork W2913765211 @default.
- W2248048385 hasRelatedWork W4225152035 @default.
- W2248048385 hasRelatedWork W4245490552 @default.
- W2248048385 isParatext "false" @default.
- W2248048385 isRetracted "false" @default.
- W2248048385 magId "2248048385" @default.
- W2248048385 workType "book-chapter" @default.