Matches in SemOpenAlex for { <https://semopenalex.org/work/W2248620004> ?p ?o ?g. }
- W2248620004 endingPage "130" @default.
- W2248620004 startingPage "119" @default.
- W2248620004 abstract "Automated nuclear detection is a critical step for a number of computer assisted pathology related image analysis algorithms such as for automated grading of breast cancer tissue specimens. The Nottingham Histologic Score system is highly correlated with the shape and appearance of breast cancer nuclei in histopathological images. However, automated nucleus detection is complicated by 1) the large number of nuclei and the size of high resolution digitized pathology images, and 2) the variability in size, shape, appearance, and texture of the individual nuclei. Recently there has been interest in the application of Deep Learning strategies for classification and analysis of big image data. Histopathology, given its size and complexity, represents an excellent use case for application of deep learning strategies. In this paper, a Stacked Sparse Autoencoder (SSAE), an instance of a deep learning strategy, is presented for efficient nuclei detection on high-resolution histopathological images of breast cancer. The SSAE learns high-level features from just pixel intensities alone in order to identify distinguishing features of nuclei. A sliding window operation is applied to each image in order to represent image patches via high-level features obtained via the auto-encoder, which are then subsequently fed to a classifier which categorizes each image patch as nuclear or non-nuclear. Across a cohort of 500 histopathological images (2200 × 2200) and approximately 3500 manually segmented individual nuclei serving as the groundtruth, SSAE was shown to have an improved F-measure 84.49% and an average area under Precision-Recall curve (AveP) 78.83%. The SSAE approach also out-performed nine other state of the art nuclear detection strategies." @default.
- W2248620004 created "2016-06-24" @default.
- W2248620004 creator A5027642699 @default.
- W2248620004 creator A5036467990 @default.
- W2248620004 creator A5045648457 @default.
- W2248620004 creator A5050725783 @default.
- W2248620004 creator A5053654026 @default.
- W2248620004 creator A5054433231 @default.
- W2248620004 creator A5067152062 @default.
- W2248620004 date "2016-01-01" @default.
- W2248620004 modified "2023-10-15" @default.
- W2248620004 title "Stacked Sparse Autoencoder (SSAE) for Nuclei Detection on Breast Cancer Histopathology Images" @default.
- W2248620004 cites W1516417927 @default.
- W2248620004 cites W1597336200 @default.
- W2248620004 cites W1883596445 @default.
- W2248620004 cites W1887296478 @default.
- W2248620004 cites W1932469787 @default.
- W2248620004 cites W1968615915 @default.
- W2248620004 cites W1980225515 @default.
- W2248620004 cites W1983193623 @default.
- W2248620004 cites W1983823085 @default.
- W2248620004 cites W1989178612 @default.
- W2248620004 cites W1993152545 @default.
- W2248620004 cites W2025376833 @default.
- W2248620004 cites W2025768430 @default.
- W2248620004 cites W2025818287 @default.
- W2248620004 cites W2026448092 @default.
- W2248620004 cites W2034980306 @default.
- W2248620004 cites W2037434877 @default.
- W2248620004 cites W2043096692 @default.
- W2248620004 cites W2051765910 @default.
- W2248620004 cites W2062600280 @default.
- W2248620004 cites W2064512348 @default.
- W2248620004 cites W2074518046 @default.
- W2248620004 cites W2080457512 @default.
- W2248620004 cites W2080971197 @default.
- W2248620004 cites W2093030207 @default.
- W2248620004 cites W2100383758 @default.
- W2248620004 cites W2100495367 @default.
- W2248620004 cites W2103243046 @default.
- W2248620004 cites W2119774436 @default.
- W2248620004 cites W2120338564 @default.
- W2248620004 cites W2133866056 @default.
- W2248620004 cites W2136081195 @default.
- W2248620004 cites W2142332605 @default.
- W2248620004 cites W2151608510 @default.
- W2248620004 cites W2155893237 @default.
- W2248620004 cites W2159551006 @default.
- W2248620004 cites W2162548780 @default.
- W2248620004 cites W2163922914 @default.
- W2248620004 cites W2167435976 @default.
- W2248620004 cites W2189343552 @default.
- W2248620004 doi "https://doi.org/10.1109/tmi.2015.2458702" @default.
- W2248620004 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4729702" @default.
- W2248620004 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26208307" @default.
- W2248620004 hasPublicationYear "2016" @default.
- W2248620004 type Work @default.
- W2248620004 sameAs 2248620004 @default.
- W2248620004 citedByCount "653" @default.
- W2248620004 countsByYear W22486200042016 @default.
- W2248620004 countsByYear W22486200042017 @default.
- W2248620004 countsByYear W22486200042018 @default.
- W2248620004 countsByYear W22486200042019 @default.
- W2248620004 countsByYear W22486200042020 @default.
- W2248620004 countsByYear W22486200042021 @default.
- W2248620004 countsByYear W22486200042022 @default.
- W2248620004 countsByYear W22486200042023 @default.
- W2248620004 crossrefType "journal-article" @default.
- W2248620004 hasAuthorship W2248620004A5027642699 @default.
- W2248620004 hasAuthorship W2248620004A5036467990 @default.
- W2248620004 hasAuthorship W2248620004A5045648457 @default.
- W2248620004 hasAuthorship W2248620004A5050725783 @default.
- W2248620004 hasAuthorship W2248620004A5053654026 @default.
- W2248620004 hasAuthorship W2248620004A5054433231 @default.
- W2248620004 hasAuthorship W2248620004A5067152062 @default.
- W2248620004 hasBestOaLocation W22486200042 @default.
- W2248620004 hasConcept C101738243 @default.
- W2248620004 hasConcept C108583219 @default.
- W2248620004 hasConcept C111919701 @default.
- W2248620004 hasConcept C118505674 @default.
- W2248620004 hasConcept C153180895 @default.
- W2248620004 hasConcept C154945302 @default.
- W2248620004 hasConcept C160633673 @default.
- W2248620004 hasConcept C2777522853 @default.
- W2248620004 hasConcept C31972630 @default.
- W2248620004 hasConcept C41008148 @default.
- W2248620004 hasConcept C95623464 @default.
- W2248620004 hasConceptScore W2248620004C101738243 @default.
- W2248620004 hasConceptScore W2248620004C108583219 @default.
- W2248620004 hasConceptScore W2248620004C111919701 @default.
- W2248620004 hasConceptScore W2248620004C118505674 @default.
- W2248620004 hasConceptScore W2248620004C153180895 @default.
- W2248620004 hasConceptScore W2248620004C154945302 @default.
- W2248620004 hasConceptScore W2248620004C160633673 @default.
- W2248620004 hasConceptScore W2248620004C2777522853 @default.
- W2248620004 hasConceptScore W2248620004C31972630 @default.
- W2248620004 hasConceptScore W2248620004C41008148 @default.
- W2248620004 hasConceptScore W2248620004C95623464 @default.