Matches in SemOpenAlex for { <https://semopenalex.org/work/W2248896319> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2248896319 abstract "The widespread use of IoT devices has opened the possibilities for many innovative applications. Almost all of these applications involve analyzing complex data streams with low latency requirements. In this regard, pattern recognition methods based on CEP have the potential to provide solutions for analyzing and correlating these complex data streams in order to detect complex events. Most of these solutions are reactive in nature as CEP acts on real-time data and does not exploit historical data. In our work, we have explored a proactive approach by exploiting historical data using machine learning methods for prediction with CEP. We propose an adaptive prediction algorithm called Adaptive Moving Window Regression (AMWR) for dynamic IoT data and evaluated it using a real-world use case. Our proposed architecture is generic and can be used across different fields for predicting complex events." @default.
- W2248896319 created "2016-06-24" @default.
- W2248896319 creator A5011008020 @default.
- W2248896319 creator A5031305285 @default.
- W2248896319 creator A5089174765 @default.
- W2248896319 creator A5089260819 @default.
- W2248896319 date "2015-12-01" @default.
- W2248896319 modified "2023-09-23" @default.
- W2248896319 title "Predicting complex events for pro-active IoT applications" @default.
- W2248896319 cites W1964357740 @default.
- W2248896319 cites W1980166218 @default.
- W2248896319 cites W1985690171 @default.
- W2248896319 cites W1998050545 @default.
- W2248896319 cites W2036832046 @default.
- W2248896319 cites W2058401212 @default.
- W2248896319 cites W2060697125 @default.
- W2248896319 cites W2071323385 @default.
- W2248896319 cites W2074108366 @default.
- W2248896319 cites W2074977287 @default.
- W2248896319 cites W2091693228 @default.
- W2248896319 cites W2099419573 @default.
- W2248896319 cites W2101924284 @default.
- W2248896319 cites W2131214113 @default.
- W2248896319 cites W2145646637 @default.
- W2248896319 cites W215839325 @default.
- W2248896319 cites W2729270693 @default.
- W2248896319 doi "https://doi.org/10.1109/wf-iot.2015.7389075" @default.
- W2248896319 hasPublicationYear "2015" @default.
- W2248896319 type Work @default.
- W2248896319 sameAs 2248896319 @default.
- W2248896319 citedByCount "21" @default.
- W2248896319 countsByYear W22488963192016 @default.
- W2248896319 countsByYear W22488963192017 @default.
- W2248896319 countsByYear W22488963192018 @default.
- W2248896319 countsByYear W22488963192019 @default.
- W2248896319 countsByYear W22488963192020 @default.
- W2248896319 countsByYear W22488963192021 @default.
- W2248896319 countsByYear W22488963192022 @default.
- W2248896319 crossrefType "proceedings-article" @default.
- W2248896319 hasAuthorship W2248896319A5011008020 @default.
- W2248896319 hasAuthorship W2248896319A5031305285 @default.
- W2248896319 hasAuthorship W2248896319A5089174765 @default.
- W2248896319 hasAuthorship W2248896319A5089260819 @default.
- W2248896319 hasBestOaLocation W22488963192 @default.
- W2248896319 hasConcept C119857082 @default.
- W2248896319 hasConcept C124101348 @default.
- W2248896319 hasConcept C154945302 @default.
- W2248896319 hasConcept C165696696 @default.
- W2248896319 hasConcept C38652104 @default.
- W2248896319 hasConcept C41008148 @default.
- W2248896319 hasConcept C76155785 @default.
- W2248896319 hasConcept C82876162 @default.
- W2248896319 hasConcept C89198739 @default.
- W2248896319 hasConceptScore W2248896319C119857082 @default.
- W2248896319 hasConceptScore W2248896319C124101348 @default.
- W2248896319 hasConceptScore W2248896319C154945302 @default.
- W2248896319 hasConceptScore W2248896319C165696696 @default.
- W2248896319 hasConceptScore W2248896319C38652104 @default.
- W2248896319 hasConceptScore W2248896319C41008148 @default.
- W2248896319 hasConceptScore W2248896319C76155785 @default.
- W2248896319 hasConceptScore W2248896319C82876162 @default.
- W2248896319 hasConceptScore W2248896319C89198739 @default.
- W2248896319 hasLocation W22488963191 @default.
- W2248896319 hasLocation W22488963192 @default.
- W2248896319 hasOpenAccess W2248896319 @default.
- W2248896319 hasPrimaryLocation W22488963191 @default.
- W2248896319 hasRelatedWork W1527191935 @default.
- W2248896319 hasRelatedWork W1555721731 @default.
- W2248896319 hasRelatedWork W2152018389 @default.
- W2248896319 hasRelatedWork W228411881 @default.
- W2248896319 hasRelatedWork W2393933887 @default.
- W2248896319 hasRelatedWork W2626390680 @default.
- W2248896319 hasRelatedWork W2961085424 @default.
- W2248896319 hasRelatedWork W2964604098 @default.
- W2248896319 hasRelatedWork W2997512100 @default.
- W2248896319 hasRelatedWork W4306674287 @default.
- W2248896319 isParatext "false" @default.
- W2248896319 isRetracted "false" @default.
- W2248896319 magId "2248896319" @default.
- W2248896319 workType "article" @default.