Matches in SemOpenAlex for { <https://semopenalex.org/work/W2249091784> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2249091784 abstract "Pregnancy is one of the most delicate stages in every woman's life requiring increased medical care and attention. Pregnancy induces a variety of abnormalities which may lead to severe complications if unnoticed or neglected. Pregnancy complications are health problems that are caused due to changes in physiological parameters during the period of gestation. Pregnancy complications can lead to severe maternal illness by women during pregnancy, at delivery and after delivery. The aim of this paper is to predict the present complications in the health of a pregnant woman using two classification algorithms namely C4.5 decision tree classification algorithm and Naive Bayes Classification Algorithm. The selected algorithms are powerful and popular tools used for the tasks of classification and prediction in Data mining. These two algorithms use pregnancy data collected from pregnant women in different stages of pregnancy to predict their present health state and the associated health complications. This study focuses on identifying the best algorithm among the two classification algorithms to predict the health status of each pregnant woman and its associated complication. Applying these classification techniques on pregnancy related data the status of risk in the health of any pregnant women can be identified and maternal and fetal morality rate can be reduced." @default.
- W2249091784 created "2016-06-24" @default.
- W2249091784 creator A5015408145 @default.
- W2249091784 creator A5022871508 @default.
- W2249091784 creator A5058140640 @default.
- W2249091784 date "2015-11-01" @default.
- W2249091784 modified "2023-10-05" @default.
- W2249091784 title "A comparative study of classification algorithms for risk prediction in pregnancy" @default.
- W2249091784 cites W2029974276 @default.
- W2249091784 cites W204854932 @default.
- W2249091784 cites W2342974662 @default.
- W2249091784 cites W3106425431 @default.
- W2249091784 cites W2339123285 @default.
- W2249091784 doi "https://doi.org/10.1109/tencon.2015.7373161" @default.
- W2249091784 hasPublicationYear "2015" @default.
- W2249091784 type Work @default.
- W2249091784 sameAs 2249091784 @default.
- W2249091784 citedByCount "4" @default.
- W2249091784 countsByYear W22490917842018 @default.
- W2249091784 countsByYear W22490917842020 @default.
- W2249091784 countsByYear W22490917842023 @default.
- W2249091784 crossrefType "proceedings-article" @default.
- W2249091784 hasAuthorship W2249091784A5015408145 @default.
- W2249091784 hasAuthorship W2249091784A5022871508 @default.
- W2249091784 hasAuthorship W2249091784A5058140640 @default.
- W2249091784 hasConcept C110083411 @default.
- W2249091784 hasConcept C11413529 @default.
- W2249091784 hasConcept C119857082 @default.
- W2249091784 hasConcept C12267149 @default.
- W2249091784 hasConcept C131872663 @default.
- W2249091784 hasConcept C154945302 @default.
- W2249091784 hasConcept C160735492 @default.
- W2249091784 hasConcept C162324750 @default.
- W2249091784 hasConcept C2779234561 @default.
- W2249091784 hasConcept C41008148 @default.
- W2249091784 hasConcept C50522688 @default.
- W2249091784 hasConcept C52001869 @default.
- W2249091784 hasConcept C54355233 @default.
- W2249091784 hasConcept C71924100 @default.
- W2249091784 hasConcept C84525736 @default.
- W2249091784 hasConcept C86803240 @default.
- W2249091784 hasConceptScore W2249091784C110083411 @default.
- W2249091784 hasConceptScore W2249091784C11413529 @default.
- W2249091784 hasConceptScore W2249091784C119857082 @default.
- W2249091784 hasConceptScore W2249091784C12267149 @default.
- W2249091784 hasConceptScore W2249091784C131872663 @default.
- W2249091784 hasConceptScore W2249091784C154945302 @default.
- W2249091784 hasConceptScore W2249091784C160735492 @default.
- W2249091784 hasConceptScore W2249091784C162324750 @default.
- W2249091784 hasConceptScore W2249091784C2779234561 @default.
- W2249091784 hasConceptScore W2249091784C41008148 @default.
- W2249091784 hasConceptScore W2249091784C50522688 @default.
- W2249091784 hasConceptScore W2249091784C52001869 @default.
- W2249091784 hasConceptScore W2249091784C54355233 @default.
- W2249091784 hasConceptScore W2249091784C71924100 @default.
- W2249091784 hasConceptScore W2249091784C84525736 @default.
- W2249091784 hasConceptScore W2249091784C86803240 @default.
- W2249091784 hasLocation W22490917841 @default.
- W2249091784 hasOpenAccess W2249091784 @default.
- W2249091784 hasPrimaryLocation W22490917841 @default.
- W2249091784 hasRelatedWork W1470425429 @default.
- W2249091784 hasRelatedWork W3020897463 @default.
- W2249091784 hasRelatedWork W3168126470 @default.
- W2249091784 hasRelatedWork W3186233728 @default.
- W2249091784 hasRelatedWork W3204641204 @default.
- W2249091784 hasRelatedWork W4226139868 @default.
- W2249091784 hasRelatedWork W4285225238 @default.
- W2249091784 hasRelatedWork W4285407528 @default.
- W2249091784 hasRelatedWork W4381745996 @default.
- W2249091784 hasRelatedWork W4385625756 @default.
- W2249091784 isParatext "false" @default.
- W2249091784 isRetracted "false" @default.
- W2249091784 magId "2249091784" @default.
- W2249091784 workType "article" @default.