Matches in SemOpenAlex for { <https://semopenalex.org/work/W2249595472> ?p ?o ?g. }
- W2249595472 endingPage "1084" @default.
- W2249595472 startingPage "1076" @default.
- W2249595472 abstract "In this study, to predict the surface roughness of stainless steel-304 in Magneto rheological Abrasive flow finishing (MRAFF) process, an artificial neural network (ANN) and regression models have been developed. In this models, the parameters such as hydraulic pressure, current to the electromagnet and number of cycles were taken as variables of the model.Taguchi’s technique has been used for designing the experiments in order to observe the different values of surface roughness . A neural network with feed forward with the help of back propagation was made up of 27 input neurons, 7 hidden neurons and one output neuron. The 6 sets of experiments were randomly selected from orthogonal array for training and residuals were used to analyze the performance. To check the validity of regression model and to determine the significant parameter affecting the surface roughness, Analysis of variance (ANOVA) and F -test were made. The numerical analysis depict that the current to the electromagnet was an paramount parameter on surface roughness.Key words: MRAFF, ANN, Regression analysis" @default.
- W2249595472 created "2016-06-24" @default.
- W2249595472 creator A5040128124 @default.
- W2249595472 creator A5078174449 @default.
- W2249595472 creator A5085863894 @default.
- W2249595472 date "2015-06-01" @default.
- W2249595472 modified "2023-09-26" @default.
- W2249595472 title "Prediction of Surface Roughness in Magneto Rheological Abrasive Flow Finishing Process by Artificial Neural Networks and Regression Analysis" @default.
- W2249595472 cites W1971375836 @default.
- W2249595472 cites W1975254595 @default.
- W2249595472 cites W1987092137 @default.
- W2249595472 cites W2003590383 @default.
- W2249595472 cites W2005429992 @default.
- W2249595472 cites W2009080901 @default.
- W2249595472 cites W2009709086 @default.
- W2249595472 cites W2012902990 @default.
- W2249595472 cites W2013712363 @default.
- W2249595472 cites W2019258798 @default.
- W2249595472 cites W2030647670 @default.
- W2249595472 cites W2038061769 @default.
- W2249595472 cites W2050203299 @default.
- W2249595472 cites W2066735789 @default.
- W2249595472 cites W2069776144 @default.
- W2249595472 cites W2073803571 @default.
- W2249595472 cites W2077669940 @default.
- W2249595472 cites W2084841915 @default.
- W2249595472 cites W2086166482 @default.
- W2249595472 cites W2087904798 @default.
- W2249595472 cites W2111736737 @default.
- W2249595472 cites W2162807413 @default.
- W2249595472 cites W4247833607 @default.
- W2249595472 doi "https://doi.org/10.4028/www.scientific.net/amm.766-767.1076" @default.
- W2249595472 hasPublicationYear "2015" @default.
- W2249595472 type Work @default.
- W2249595472 sameAs 2249595472 @default.
- W2249595472 citedByCount "3" @default.
- W2249595472 countsByYear W22495954722021 @default.
- W2249595472 countsByYear W22495954722022 @default.
- W2249595472 countsByYear W22495954722023 @default.
- W2249595472 crossrefType "journal-article" @default.
- W2249595472 hasAuthorship W2249595472A5040128124 @default.
- W2249595472 hasAuthorship W2249595472A5078174449 @default.
- W2249595472 hasAuthorship W2249595472A5085863894 @default.
- W2249595472 hasConcept C105795698 @default.
- W2249595472 hasConcept C107365816 @default.
- W2249595472 hasConcept C127413603 @default.
- W2249595472 hasConcept C152877465 @default.
- W2249595472 hasConcept C154945302 @default.
- W2249595472 hasConcept C159985019 @default.
- W2249595472 hasConcept C192562407 @default.
- W2249595472 hasConcept C2524010 @default.
- W2249595472 hasConcept C2780957350 @default.
- W2249595472 hasConcept C33923547 @default.
- W2249595472 hasConcept C34559072 @default.
- W2249595472 hasConcept C38349280 @default.
- W2249595472 hasConcept C41008148 @default.
- W2249595472 hasConcept C42632107 @default.
- W2249595472 hasConcept C48921125 @default.
- W2249595472 hasConcept C50644808 @default.
- W2249595472 hasConcept C71039073 @default.
- W2249595472 hasConcept C78519656 @default.
- W2249595472 hasConcept C83469408 @default.
- W2249595472 hasConceptScore W2249595472C105795698 @default.
- W2249595472 hasConceptScore W2249595472C107365816 @default.
- W2249595472 hasConceptScore W2249595472C127413603 @default.
- W2249595472 hasConceptScore W2249595472C152877465 @default.
- W2249595472 hasConceptScore W2249595472C154945302 @default.
- W2249595472 hasConceptScore W2249595472C159985019 @default.
- W2249595472 hasConceptScore W2249595472C192562407 @default.
- W2249595472 hasConceptScore W2249595472C2524010 @default.
- W2249595472 hasConceptScore W2249595472C2780957350 @default.
- W2249595472 hasConceptScore W2249595472C33923547 @default.
- W2249595472 hasConceptScore W2249595472C34559072 @default.
- W2249595472 hasConceptScore W2249595472C38349280 @default.
- W2249595472 hasConceptScore W2249595472C41008148 @default.
- W2249595472 hasConceptScore W2249595472C42632107 @default.
- W2249595472 hasConceptScore W2249595472C48921125 @default.
- W2249595472 hasConceptScore W2249595472C50644808 @default.
- W2249595472 hasConceptScore W2249595472C71039073 @default.
- W2249595472 hasConceptScore W2249595472C78519656 @default.
- W2249595472 hasConceptScore W2249595472C83469408 @default.
- W2249595472 hasLocation W22495954721 @default.
- W2249595472 hasOpenAccess W2249595472 @default.
- W2249595472 hasPrimaryLocation W22495954721 @default.
- W2249595472 hasRelatedWork W1579216137 @default.
- W2249595472 hasRelatedWork W2617105262 @default.
- W2249595472 hasRelatedWork W2775432652 @default.
- W2249595472 hasRelatedWork W2792538659 @default.
- W2249595472 hasRelatedWork W2808375641 @default.
- W2249595472 hasRelatedWork W2937163405 @default.
- W2249595472 hasRelatedWork W4213042487 @default.
- W2249595472 hasRelatedWork W4293056897 @default.
- W2249595472 hasRelatedWork W4313812407 @default.
- W2249595472 hasRelatedWork W2242493661 @default.
- W2249595472 hasVolume "766-767" @default.
- W2249595472 isParatext "false" @default.
- W2249595472 isRetracted "false" @default.
- W2249595472 magId "2249595472" @default.