Matches in SemOpenAlex for { <https://semopenalex.org/work/W2250151608> ?p ?o ?g. }
- W2250151608 endingPage "85" @default.
- W2250151608 startingPage "79" @default.
- W2250151608 abstract "In times of rising energy costs and increasing customer awareness of sustainable production methods, many manufacturers take measures to reduce their energy consumption. However, after the realization of such activities the energy demand often tends to increase again due to e.g. leaks, clogged filters, defect valves or suboptimal parameter settings. In order to prevent this, it is necessary to quickly identify such increases by continuously monitoring the energy consumption and counteracting accordingly. Currently, the monitoring is either performed manually or by setting static threshold values. The manual control can be time consuming for large amounts of sensor data. By setting static threshold values only a fraction of the inefficiencies are disclosed. Another option is to use anomaly detection methods from the area of machine learning, which compare the actual sensor values with the expected ones. In this paper an overview about existing anomaly detection methods, which can be applied for this purpose, is presented." @default.
- W2250151608 created "2016-06-24" @default.
- W2250151608 creator A5035948604 @default.
- W2250151608 creator A5047969051 @default.
- W2250151608 creator A5051309083 @default.
- W2250151608 date "2015-11-01" @default.
- W2250151608 modified "2023-09-27" @default.
- W2250151608 title "Approaches for Monitoring the Energy Consumption with Machine Learning Methods" @default.
- W2250151608 cites W1977051269 @default.
- W2250151608 cites W1979052428 @default.
- W2250151608 cites W2011893683 @default.
- W2250151608 cites W2018887192 @default.
- W2250151608 cites W2038819732 @default.
- W2250151608 cites W2046928521 @default.
- W2250151608 cites W2051607409 @default.
- W2250151608 cites W2055616403 @default.
- W2250151608 cites W2084763720 @default.
- W2250151608 cites W2098759488 @default.
- W2250151608 cites W2104296640 @default.
- W2250151608 cites W2106334675 @default.
- W2250151608 cites W2106595237 @default.
- W2250151608 cites W2111999566 @default.
- W2250151608 cites W2112618476 @default.
- W2250151608 cites W2120096609 @default.
- W2250151608 cites W2122646361 @default.
- W2250151608 cites W2127864442 @default.
- W2250151608 cites W2161863692 @default.
- W2250151608 cites W2165444651 @default.
- W2250151608 cites W2170647963 @default.
- W2250151608 cites W2612975600 @default.
- W2250151608 cites W3125923948 @default.
- W2250151608 cites W3169372665 @default.
- W2250151608 cites W4211139099 @default.
- W2250151608 cites W4238532693 @default.
- W2250151608 cites W4312937824 @default.
- W2250151608 cites W1994023217 @default.
- W2250151608 doi "https://doi.org/10.4028/www.scientific.net/amm.805.79" @default.
- W2250151608 hasPublicationYear "2015" @default.
- W2250151608 type Work @default.
- W2250151608 sameAs 2250151608 @default.
- W2250151608 citedByCount "0" @default.
- W2250151608 crossrefType "journal-article" @default.
- W2250151608 hasAuthorship W2250151608A5035948604 @default.
- W2250151608 hasAuthorship W2250151608A5047969051 @default.
- W2250151608 hasAuthorship W2250151608A5051309083 @default.
- W2250151608 hasConcept C105795698 @default.
- W2250151608 hasConcept C119599485 @default.
- W2250151608 hasConcept C124101348 @default.
- W2250151608 hasConcept C127413603 @default.
- W2250151608 hasConcept C139719470 @default.
- W2250151608 hasConcept C144024400 @default.
- W2250151608 hasConcept C154945302 @default.
- W2250151608 hasConcept C162324750 @default.
- W2250151608 hasConcept C186370098 @default.
- W2250151608 hasConcept C200601418 @default.
- W2250151608 hasConcept C2775924081 @default.
- W2250151608 hasConcept C2778348673 @default.
- W2250151608 hasConcept C2780165032 @default.
- W2250151608 hasConcept C2781089630 @default.
- W2250151608 hasConcept C30772137 @default.
- W2250151608 hasConcept C33923547 @default.
- W2250151608 hasConcept C36289849 @default.
- W2250151608 hasConcept C41008148 @default.
- W2250151608 hasConcept C739882 @default.
- W2250151608 hasConcept C79403827 @default.
- W2250151608 hasConceptScore W2250151608C105795698 @default.
- W2250151608 hasConceptScore W2250151608C119599485 @default.
- W2250151608 hasConceptScore W2250151608C124101348 @default.
- W2250151608 hasConceptScore W2250151608C127413603 @default.
- W2250151608 hasConceptScore W2250151608C139719470 @default.
- W2250151608 hasConceptScore W2250151608C144024400 @default.
- W2250151608 hasConceptScore W2250151608C154945302 @default.
- W2250151608 hasConceptScore W2250151608C162324750 @default.
- W2250151608 hasConceptScore W2250151608C186370098 @default.
- W2250151608 hasConceptScore W2250151608C200601418 @default.
- W2250151608 hasConceptScore W2250151608C2775924081 @default.
- W2250151608 hasConceptScore W2250151608C2778348673 @default.
- W2250151608 hasConceptScore W2250151608C2780165032 @default.
- W2250151608 hasConceptScore W2250151608C2781089630 @default.
- W2250151608 hasConceptScore W2250151608C30772137 @default.
- W2250151608 hasConceptScore W2250151608C33923547 @default.
- W2250151608 hasConceptScore W2250151608C36289849 @default.
- W2250151608 hasConceptScore W2250151608C41008148 @default.
- W2250151608 hasConceptScore W2250151608C739882 @default.
- W2250151608 hasConceptScore W2250151608C79403827 @default.
- W2250151608 hasLocation W22501516081 @default.
- W2250151608 hasOpenAccess W2250151608 @default.
- W2250151608 hasPrimaryLocation W22501516081 @default.
- W2250151608 hasRelatedWork W102836821 @default.
- W2250151608 hasRelatedWork W1574862413 @default.
- W2250151608 hasRelatedWork W1975629292 @default.
- W2250151608 hasRelatedWork W2145248613 @default.
- W2250151608 hasRelatedWork W2305301640 @default.
- W2250151608 hasRelatedWork W2376774548 @default.
- W2250151608 hasRelatedWork W2406747782 @default.
- W2250151608 hasRelatedWork W2502168120 @default.
- W2250151608 hasRelatedWork W2770759505 @default.
- W2250151608 hasRelatedWork W3158005764 @default.