Matches in SemOpenAlex for { <https://semopenalex.org/work/W2250489727> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W2250489727 endingPage "177" @default.
- W2250489727 startingPage "170" @default.
- W2250489727 abstract "Realizing expressive text-to-speech synthesis needs both text processing and the rendering of natural expressive speech. This paper focuses on the former as a front-end task in the production of synthetic speech, and investigates a novel method for predicting emphasized accent phrases from advertisement text information. For this purpose, we examine features that can be accurately extracted by text processing based on current Text-tospeech synthesis technologies. Among features, the word surface string of the main content and function words and the part-of-speech of main function words in an accent phrase are found to have higher potential on predicting whether the accent phrase should be emphasized or not through the calculation of mutual information between emphasis label and features of Japanese advertisement sentences. Experiments confirm that emphasized accent phrase prediction using support vector machine (SVM) offers encouraging accuracies for the system which requires emphasized accent phrase locations as context information to improve speech synthesis qualities." @default.
- W2250489727 created "2016-06-24" @default.
- W2250489727 creator A5021823131 @default.
- W2250489727 creator A5034735400 @default.
- W2250489727 creator A5035788151 @default.
- W2250489727 date "2014-12-01" @default.
- W2250489727 modified "2023-09-26" @default.
- W2250489727 title "Emphasized Accent Phrase Prediction from Text for Advertisement Text-To-Speech Synthesis" @default.
- W2250489727 cites W1539337024 @default.
- W2250489727 cites W2032899051 @default.
- W2250489727 cites W2048389584 @default.
- W2250489727 cites W2088965663 @default.
- W2250489727 cites W2112985344 @default.
- W2250489727 cites W2129142580 @default.
- W2250489727 cites W2140247295 @default.
- W2250489727 cites W2150658333 @default.
- W2250489727 cites W2186079634 @default.
- W2250489727 cites W2244930836 @default.
- W2250489727 cites W2398699645 @default.
- W2250489727 cites W2399028925 @default.
- W2250489727 hasPublicationYear "2014" @default.
- W2250489727 type Work @default.
- W2250489727 sameAs 2250489727 @default.
- W2250489727 citedByCount "7" @default.
- W2250489727 countsByYear W22504897272019 @default.
- W2250489727 countsByYear W22504897272020 @default.
- W2250489727 crossrefType "proceedings-article" @default.
- W2250489727 hasAuthorship W2250489727A5021823131 @default.
- W2250489727 hasAuthorship W2250489727A5034735400 @default.
- W2250489727 hasAuthorship W2250489727A5035788151 @default.
- W2250489727 hasConcept C14999030 @default.
- W2250489727 hasConcept C154945302 @default.
- W2250489727 hasConcept C204321447 @default.
- W2250489727 hasConcept C2776224158 @default.
- W2250489727 hasConcept C2776756274 @default.
- W2250489727 hasConcept C28490314 @default.
- W2250489727 hasConcept C41008148 @default.
- W2250489727 hasConceptScore W2250489727C14999030 @default.
- W2250489727 hasConceptScore W2250489727C154945302 @default.
- W2250489727 hasConceptScore W2250489727C204321447 @default.
- W2250489727 hasConceptScore W2250489727C2776224158 @default.
- W2250489727 hasConceptScore W2250489727C2776756274 @default.
- W2250489727 hasConceptScore W2250489727C28490314 @default.
- W2250489727 hasConceptScore W2250489727C41008148 @default.
- W2250489727 hasLocation W22504897271 @default.
- W2250489727 hasOpenAccess W2250489727 @default.
- W2250489727 hasPrimaryLocation W22504897271 @default.
- W2250489727 hasRelatedWork W1573256281 @default.
- W2250489727 hasRelatedWork W16234320 @default.
- W2250489727 hasRelatedWork W1965555277 @default.
- W2250489727 hasRelatedWork W2040482773 @default.
- W2250489727 hasRelatedWork W2101762720 @default.
- W2250489727 hasRelatedWork W2115797868 @default.
- W2250489727 hasRelatedWork W2122888894 @default.
- W2250489727 hasRelatedWork W2124551647 @default.
- W2250489727 hasRelatedWork W2186079634 @default.
- W2250489727 hasRelatedWork W2288128795 @default.
- W2250489727 hasRelatedWork W2405329321 @default.
- W2250489727 hasRelatedWork W2522415541 @default.
- W2250489727 hasRelatedWork W2561088501 @default.
- W2250489727 hasRelatedWork W2566480286 @default.
- W2250489727 hasRelatedWork W2953061889 @default.
- W2250489727 hasRelatedWork W2960067345 @default.
- W2250489727 hasRelatedWork W2963341956 @default.
- W2250489727 hasRelatedWork W2965373594 @default.
- W2250489727 hasRelatedWork W3017847795 @default.
- W2250489727 hasRelatedWork W2739535381 @default.
- W2250489727 isParatext "false" @default.
- W2250489727 isRetracted "false" @default.
- W2250489727 magId "2250489727" @default.
- W2250489727 workType "article" @default.