Matches in SemOpenAlex for { <https://semopenalex.org/work/W225087684> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W225087684 abstract "Author(s): Purdy, David Gregory | Advisor(s): Yu, Bin | Abstract: Significant recent advances in many areas of data collection and processing have introduced many challenges for modeling such data. Data sets have exploded in the number of observations and dimensionality. The explosion in dimensionality has led to advances in the modeling of high dimensional data with regularized and sparse models. One of the more interesting and challenging varieties of high dimensional data are sparse data sets. Sparse data sets arise from many important areas involving human-computer interaction, such as text and language processing, and human-human interaction, such as social networks.Our motivation in this thesis is to explore the use of sparse models for applications involving sparse data. In some cases, we have made improvements over previous methods that fundamentally involved dense models fitted on, and applied to, sparse data. In other cases, we have adapted sparse models developed for dense data sets. Along the way, we have encountered a recurring issue: due to both subsampling and regularization, we are faced with a problem that sparse models may not adequately capture the full dimensionality of such data and may be inadequate for prediction on test data.The utility of sparse models have been demonstrated in contexts with very high dimensional dense data. In this dissertation, we shall examine two applications and modeling methods involving sparse linear models and sparse matrix decompositions. Our first application involves natural language processing and ranking, the second involves recommendation systems and matrix factorization.In Chapter 2, we developed a novel and powerful visualization system. We named our system Bonsai as it enables a curated process of developing trees that partition the joint space of data and models. By exploring the product space of the space of training data, the space of modeling parameters, and the space of test data, we can explore how our models are developed based on the constraints imposed and the data they attempt to model or predict. More generally, we believe we have introduced a very fruitful means of exploring a multiplicity of models and a multiplicity of data samples.Chapter 3 is based on our work in the Netflix Prize competition. In contrast to others' use of dense models for this sparse data, we sought to introduce modeling methods with tunable sparsity. In this work, we found striking difficulties in modeling the data with sparse models, and identified concerns about the utility of sparse models for sparse data.In conclusion, this thesis presents several methods, and limitations of such methods, for modeling sparse data with sparse models. These limitations are suggestive of new directions to pursue. In particular, we are optimistic that future research in modeling methods may find new ways to tune models for density, when applied to sparse data, just as much research on models for dense data has involved tuning models for sparsity." @default.
- W225087684 created "2016-06-24" @default.
- W225087684 creator A5002819229 @default.
- W225087684 date "2012-01-01" @default.
- W225087684 modified "2023-09-23" @default.
- W225087684 title "Sparse Models for Sparse Data: Methods, Limitations, Visualizations, and Ensembles" @default.
- W225087684 cites W174106550 @default.
- W225087684 cites W1992270714 @default.
- W225087684 cites W2056760161 @default.
- W225087684 cites W2149409084 @default.
- W225087684 cites W2172249709 @default.
- W225087684 cites W2987941883 @default.
- W225087684 hasPublicationYear "2012" @default.
- W225087684 type Work @default.
- W225087684 sameAs 225087684 @default.
- W225087684 citedByCount "0" @default.
- W225087684 crossrefType "journal-article" @default.
- W225087684 hasAuthorship W225087684A5002819229 @default.
- W225087684 hasConcept C111030470 @default.
- W225087684 hasConcept C119857082 @default.
- W225087684 hasConcept C121332964 @default.
- W225087684 hasConcept C124066611 @default.
- W225087684 hasConcept C124101348 @default.
- W225087684 hasConcept C154945302 @default.
- W225087684 hasConcept C158693339 @default.
- W225087684 hasConcept C163716315 @default.
- W225087684 hasConcept C41008148 @default.
- W225087684 hasConcept C42355184 @default.
- W225087684 hasConcept C56372850 @default.
- W225087684 hasConcept C62520636 @default.
- W225087684 hasConcept C67186912 @default.
- W225087684 hasConcept C77088390 @default.
- W225087684 hasConceptScore W225087684C111030470 @default.
- W225087684 hasConceptScore W225087684C119857082 @default.
- W225087684 hasConceptScore W225087684C121332964 @default.
- W225087684 hasConceptScore W225087684C124066611 @default.
- W225087684 hasConceptScore W225087684C124101348 @default.
- W225087684 hasConceptScore W225087684C154945302 @default.
- W225087684 hasConceptScore W225087684C158693339 @default.
- W225087684 hasConceptScore W225087684C163716315 @default.
- W225087684 hasConceptScore W225087684C41008148 @default.
- W225087684 hasConceptScore W225087684C42355184 @default.
- W225087684 hasConceptScore W225087684C56372850 @default.
- W225087684 hasConceptScore W225087684C62520636 @default.
- W225087684 hasConceptScore W225087684C67186912 @default.
- W225087684 hasConceptScore W225087684C77088390 @default.
- W225087684 hasLocation W2250876841 @default.
- W225087684 hasOpenAccess W225087684 @default.
- W225087684 hasPrimaryLocation W2250876841 @default.
- W225087684 hasRelatedWork W2001097032 @default.
- W225087684 hasRelatedWork W2006766628 @default.
- W225087684 hasRelatedWork W2011265186 @default.
- W225087684 hasRelatedWork W2030115031 @default.
- W225087684 hasRelatedWork W2211485395 @default.
- W225087684 hasRelatedWork W2247013936 @default.
- W225087684 hasRelatedWork W2251363724 @default.
- W225087684 hasRelatedWork W23523134 @default.
- W225087684 hasRelatedWork W2501450488 @default.
- W225087684 hasRelatedWork W2525257641 @default.
- W225087684 hasRelatedWork W2617362271 @default.
- W225087684 hasRelatedWork W2734893472 @default.
- W225087684 hasRelatedWork W2766927566 @default.
- W225087684 hasRelatedWork W2792279561 @default.
- W225087684 hasRelatedWork W2951388332 @default.
- W225087684 hasRelatedWork W3023454035 @default.
- W225087684 hasRelatedWork W3027666981 @default.
- W225087684 hasRelatedWork W3038007061 @default.
- W225087684 hasRelatedWork W3594516 @default.
- W225087684 hasRelatedWork W3148943941 @default.
- W225087684 isParatext "false" @default.
- W225087684 isRetracted "false" @default.
- W225087684 magId "225087684" @default.
- W225087684 workType "article" @default.