Matches in SemOpenAlex for { <https://semopenalex.org/work/W2251644265> ?p ?o ?g. }
- W2251644265 abstract "Several state-of-the-art event extraction systems employ models based on Support Vector Machines (SVMs) in a pipeline architecture, which fails to exploit the joint dependencies that typically exist among events and arguments. While there have been attempts to overcome this limitation using Markov Logic Networks (MLNs), it remains challenging to perform joint inference in MLNs when the model encodes many high-dimensional sophisticated features such as those essential for event extraction. In this paper, we propose a new model for event extraction that combines the power of MLNs and SVMs, dwarfing their limitations. The key idea is to reliably learn and process high-dimensional features using SVMs; encode the output of SVMs as low-dimensional, soft formulas in MLNs; and use the superior joint inferencing power of MLNs to enforce joint consistency constraints over the soft formulas. We evaluate our approach for the task of extracting biomedical events on the BioNLP 2013, 2011 and 2009 Genia shared task datasets. Our approach yields the best F1 score to date on the BioNLP’13 (53.61) and BioNLP’11 (58.07) datasets and the second-best F1 score to date on the BioNLP’09 dataset (58.16)." @default.
- W2251644265 created "2016-06-24" @default.
- W2251644265 creator A5004305684 @default.
- W2251644265 creator A5038455119 @default.
- W2251644265 creator A5063253432 @default.
- W2251644265 creator A5086262717 @default.
- W2251644265 date "2014-01-01" @default.
- W2251644265 modified "2023-10-13" @default.
- W2251644265 title "Relieving the Computational Bottleneck: Joint Inference for Event Extraction with High-Dimensional Features" @default.
- W2251644265 cites W121805954 @default.
- W2251644265 cites W122290181 @default.
- W2251644265 cites W136394213 @default.
- W2251644265 cites W1508671669 @default.
- W2251644265 cites W1511986666 @default.
- W2251644265 cites W1535439311 @default.
- W2251644265 cites W154351976 @default.
- W2251644265 cites W1569098853 @default.
- W2251644265 cites W1576520375 @default.
- W2251644265 cites W1585529040 @default.
- W2251644265 cites W1599188306 @default.
- W2251644265 cites W16142220 @default.
- W2251644265 cites W165790511 @default.
- W2251644265 cites W1787402258 @default.
- W2251644265 cites W1877040722 @default.
- W2251644265 cites W1898214464 @default.
- W2251644265 cites W1965417459 @default.
- W2251644265 cites W1965893653 @default.
- W2251644265 cites W1997945384 @default.
- W2251644265 cites W2008652694 @default.
- W2251644265 cites W2017127020 @default.
- W2251644265 cites W2032566933 @default.
- W2251644265 cites W2038037963 @default.
- W2251644265 cites W2072628044 @default.
- W2251644265 cites W2092654472 @default.
- W2251644265 cites W2098162425 @default.
- W2251644265 cites W2102563561 @default.
- W2251644265 cites W2108706252 @default.
- W2251644265 cites W2108743083 @default.
- W2251644265 cites W2110408238 @default.
- W2251644265 cites W2120727810 @default.
- W2251644265 cites W2122003883 @default.
- W2251644265 cites W2123661878 @default.
- W2251644265 cites W2128364334 @default.
- W2251644265 cites W2134486566 @default.
- W2251644265 cites W2146313271 @default.
- W2251644265 cites W2149803936 @default.
- W2251644265 cites W2155598164 @default.
- W2251644265 cites W2156909104 @default.
- W2251644265 cites W2165516035 @default.
- W2251644265 cites W2165962657 @default.
- W2251644265 cites W2170953709 @default.
- W2251644265 cites W2185615741 @default.
- W2251644265 cites W2211728022 @default.
- W2251644265 cites W2250259034 @default.
- W2251644265 cites W2250469303 @default.
- W2251644265 cites W2250591852 @default.
- W2251644265 cites W2251108261 @default.
- W2251644265 cites W2251251652 @default.
- W2251644265 cites W2251279337 @default.
- W2251644265 cites W2251814321 @default.
- W2251644265 cites W2252226131 @default.
- W2251644265 cites W2429914308 @default.
- W2251644265 cites W2503079136 @default.
- W2251644265 cites W2525721411 @default.
- W2251644265 cites W2916355958 @default.
- W2251644265 cites W47392883 @default.
- W2251644265 cites W752825483 @default.
- W2251644265 cites W76749362 @default.
- W2251644265 doi "https://doi.org/10.3115/v1/d14-1090" @default.
- W2251644265 hasPublicationYear "2014" @default.
- W2251644265 type Work @default.
- W2251644265 sameAs 2251644265 @default.
- W2251644265 citedByCount "44" @default.
- W2251644265 countsByYear W22516442652015 @default.
- W2251644265 countsByYear W22516442652016 @default.
- W2251644265 countsByYear W22516442652017 @default.
- W2251644265 countsByYear W22516442652018 @default.
- W2251644265 countsByYear W22516442652019 @default.
- W2251644265 countsByYear W22516442652020 @default.
- W2251644265 countsByYear W22516442652021 @default.
- W2251644265 countsByYear W22516442652022 @default.
- W2251644265 countsByYear W22516442652023 @default.
- W2251644265 crossrefType "proceedings-article" @default.
- W2251644265 hasAuthorship W2251644265A5004305684 @default.
- W2251644265 hasAuthorship W2251644265A5038455119 @default.
- W2251644265 hasAuthorship W2251644265A5063253432 @default.
- W2251644265 hasAuthorship W2251644265A5086262717 @default.
- W2251644265 hasBestOaLocation W22516442651 @default.
- W2251644265 hasConcept C121332964 @default.
- W2251644265 hasConcept C124101348 @default.
- W2251644265 hasConcept C127413603 @default.
- W2251644265 hasConcept C149635348 @default.
- W2251644265 hasConcept C154945302 @default.
- W2251644265 hasConcept C18555067 @default.
- W2251644265 hasConcept C185592680 @default.
- W2251644265 hasConcept C2776214188 @default.
- W2251644265 hasConcept C2779662365 @default.
- W2251644265 hasConcept C2780513914 @default.
- W2251644265 hasConcept C41008148 @default.
- W2251644265 hasConcept C43617362 @default.