Matches in SemOpenAlex for { <https://semopenalex.org/work/W2251728720> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2251728720 endingPage "232" @default.
- W2251728720 startingPage "226" @default.
- W2251728720 abstract "Fast identification of moisture content in tobacco plant leaves plays a key role in the tobacco cultivation industry and benefits the management of tobacco plant in the farm. In order to identify moisture content of tobacco plant leaves in a fast and nondestructive way, a method involving Mahalanobis distance coupled with Monte Carlo cross validation(MD-MCCV) was proposed to eliminate outlier sample in this study. The hyperspectral data of 200 tobacco plant leaf samples of 20 moisture gradients were obtained using FieldSpc® 3 spectrometer. Savitzky-Golay smoothing(SG), roughness penalty smoothing(RPS), kernel smoothing(KS) and median smoothing(MS) were used to preprocess the raw spectra. In addition, Mahalanobis distance(MD), Monte Carlo cross validation(MCCV) and Mahalanobis distance coupled to Monte Carlo cross validation(MD-MCCV) were applied to select the outlier sample of the raw spectrum and four smoothing preprocessing spectra. Successive projections algorithm (SPA) was used to extract the most influential wavelengths. Multiple Linear Regression (MLR) was applied to build the prediction models based on preprocessed spectra feature in characteristic wavelengths. The results showed that the preferably four prediction model were MD-MCCV-SG (Rp2 = 0.8401 and RMSEP = 0.1355), MD-MCCV-RPS (Rp2 = 0.8030 and RMSEP = 0.1274), MD-MCCV-KS (Rp2 = 0.8117 and RMSEP = 0.1433), MD-MCCV-MS (Rp2 = 0.9132 and RMSEP = 0.1162). MD-MCCV algorithm performed best among MD algorithm, MCCV algorithm and the method without sample pretreatment algorithm in the eliminating outlier sample from 20 different moisture gradients of tobacco plant leaves and MD-MCCV can be used to eliminate outlier sample in the spectral preprocessing." @default.
- W2251728720 created "2016-06-24" @default.
- W2251728720 creator A5034909747 @default.
- W2251728720 creator A5035804461 @default.
- W2251728720 creator A5067563426 @default.
- W2251728720 creator A5072645559 @default.
- W2251728720 creator A5080213192 @default.
- W2251728720 date "2016-02-01" @default.
- W2251728720 modified "2023-10-12" @default.
- W2251728720 title "Identification of moisture content in tobacco plant leaves using outlier sample eliminating algorithms and hyperspectral data" @default.
- W2251728720 cites W1238908634 @default.
- W2251728720 cites W1965625770 @default.
- W2251728720 cites W1969939394 @default.
- W2251728720 cites W1973276337 @default.
- W2251728720 cites W1974029843 @default.
- W2251728720 cites W1987891903 @default.
- W2251728720 cites W2001298023 @default.
- W2251728720 cites W2001736287 @default.
- W2251728720 cites W2009295913 @default.
- W2251728720 cites W2020630048 @default.
- W2251728720 cites W2027550303 @default.
- W2251728720 cites W2035139756 @default.
- W2251728720 cites W2040577629 @default.
- W2251728720 cites W2050649264 @default.
- W2251728720 cites W2059626457 @default.
- W2251728720 cites W2066328419 @default.
- W2251728720 cites W2079629588 @default.
- W2251728720 cites W2081373740 @default.
- W2251728720 cites W2095727687 @default.
- W2251728720 cites W2133272607 @default.
- W2251728720 cites W2174120677 @default.
- W2251728720 cites W336081306 @default.
- W2251728720 doi "https://doi.org/10.1016/j.bbrc.2016.01.125" @default.
- W2251728720 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26809097" @default.
- W2251728720 hasPublicationYear "2016" @default.
- W2251728720 type Work @default.
- W2251728720 sameAs 2251728720 @default.
- W2251728720 citedByCount "17" @default.
- W2251728720 countsByYear W22517287202017 @default.
- W2251728720 countsByYear W22517287202018 @default.
- W2251728720 countsByYear W22517287202019 @default.
- W2251728720 countsByYear W22517287202020 @default.
- W2251728720 countsByYear W22517287202021 @default.
- W2251728720 countsByYear W22517287202022 @default.
- W2251728720 countsByYear W22517287202023 @default.
- W2251728720 crossrefType "journal-article" @default.
- W2251728720 hasAuthorship W2251728720A5034909747 @default.
- W2251728720 hasAuthorship W2251728720A5035804461 @default.
- W2251728720 hasAuthorship W2251728720A5067563426 @default.
- W2251728720 hasAuthorship W2251728720A5072645559 @default.
- W2251728720 hasAuthorship W2251728720A5080213192 @default.
- W2251728720 hasConcept C105795698 @default.
- W2251728720 hasConcept C11413529 @default.
- W2251728720 hasConcept C1921717 @default.
- W2251728720 hasConcept C19499675 @default.
- W2251728720 hasConcept C33923547 @default.
- W2251728720 hasConcept C3770464 @default.
- W2251728720 hasConcept C41008148 @default.
- W2251728720 hasConcept C79337645 @default.
- W2251728720 hasConceptScore W2251728720C105795698 @default.
- W2251728720 hasConceptScore W2251728720C11413529 @default.
- W2251728720 hasConceptScore W2251728720C1921717 @default.
- W2251728720 hasConceptScore W2251728720C19499675 @default.
- W2251728720 hasConceptScore W2251728720C33923547 @default.
- W2251728720 hasConceptScore W2251728720C3770464 @default.
- W2251728720 hasConceptScore W2251728720C41008148 @default.
- W2251728720 hasConceptScore W2251728720C79337645 @default.
- W2251728720 hasFunder F4320321001 @default.
- W2251728720 hasFunder F4320322736 @default.
- W2251728720 hasFunder F4320322769 @default.
- W2251728720 hasFunder F4320326182 @default.
- W2251728720 hasIssue "1" @default.
- W2251728720 hasLocation W22517287201 @default.
- W2251728720 hasLocation W22517287202 @default.
- W2251728720 hasOpenAccess W2251728720 @default.
- W2251728720 hasPrimaryLocation W22517287201 @default.
- W2251728720 hasRelatedWork W1431147547 @default.
- W2251728720 hasRelatedWork W2053213469 @default.
- W2251728720 hasRelatedWork W2055761197 @default.
- W2251728720 hasRelatedWork W2355463328 @default.
- W2251728720 hasRelatedWork W2402648945 @default.
- W2251728720 hasRelatedWork W2771741613 @default.
- W2251728720 hasRelatedWork W3182289794 @default.
- W2251728720 hasRelatedWork W4297538084 @default.
- W2251728720 hasRelatedWork W4382795578 @default.
- W2251728720 hasRelatedWork W4386482528 @default.
- W2251728720 hasVolume "471" @default.
- W2251728720 isParatext "false" @default.
- W2251728720 isRetracted "false" @default.
- W2251728720 magId "2251728720" @default.
- W2251728720 workType "article" @default.