Matches in SemOpenAlex for { <https://semopenalex.org/work/W2251818274> ?p ?o ?g. }
- W2251818274 endingPage "1130" @default.
- W2251818274 startingPage "1120" @default.
- W2251818274 abstract "Non-expert annotation services like Amazon’s Mechanical Turk (AMT) are cheap and fast ways to evaluate systems and provide categorical annotations for training data. Unfortunately, some annotators choose bad labels in order to maximize their pay. Manual identification is tedious, so we experiment with an item-response model. It learns in an unsupervised fashion to a) identify which annotators are trustworthy and b) predict the correct underlying labels. We match performance of more complex state-of-the-art systems and perform well even under adversarial conditions. We show considerable improvements over standard baselines, both for predicted label accuracy and trustworthiness estimates. The latter can be further improved by introducing a prior on model parameters and using Variational Bayes inference. Additionally, we can achieve even higher accuracy by focusing on the instances our model is most confident in (trading in some recall), and by incorporating annotated control instances. Our system, MACE (Multi-Annotator Competence Estimation), is available for download 1 ." @default.
- W2251818274 created "2016-06-24" @default.
- W2251818274 creator A5017455302 @default.
- W2251818274 creator A5050626617 @default.
- W2251818274 creator A5060225743 @default.
- W2251818274 creator A5084505122 @default.
- W2251818274 date "2013-06-01" @default.
- W2251818274 modified "2023-09-29" @default.
- W2251818274 title "Learning Whom to Trust with MACE" @default.
- W2251818274 cites W102761132 @default.
- W2251818274 cites W1570013475 @default.
- W2251818274 cites W1898139072 @default.
- W2251818274 cites W1970381522 @default.
- W2251818274 cites W1983897914 @default.
- W2251818274 cites W1996290308 @default.
- W2251818274 cites W2049633694 @default.
- W2251818274 cites W2119830539 @default.
- W2251818274 cites W2124865010 @default.
- W2251818274 cites W2127849236 @default.
- W2251818274 cites W2142518823 @default.
- W2251818274 cites W2144660879 @default.
- W2251818274 cites W2149273804 @default.
- W2251818274 cites W2149489787 @default.
- W2251818274 cites W2154096410 @default.
- W2251818274 cites W2159107349 @default.
- W2251818274 cites W2159133636 @default.
- W2251818274 cites W2160918952 @default.
- W2251818274 cites W2166146553 @default.
- W2251818274 cites W2577168861 @default.
- W2251818274 cites W9014458 @default.
- W2251818274 cites W2884422990 @default.
- W2251818274 hasPublicationYear "2013" @default.
- W2251818274 type Work @default.
- W2251818274 sameAs 2251818274 @default.
- W2251818274 citedByCount "186" @default.
- W2251818274 countsByYear W22518182742013 @default.
- W2251818274 countsByYear W22518182742014 @default.
- W2251818274 countsByYear W22518182742015 @default.
- W2251818274 countsByYear W22518182742016 @default.
- W2251818274 countsByYear W22518182742017 @default.
- W2251818274 countsByYear W22518182742018 @default.
- W2251818274 countsByYear W22518182742019 @default.
- W2251818274 countsByYear W22518182742020 @default.
- W2251818274 countsByYear W22518182742021 @default.
- W2251818274 countsByYear W22518182742022 @default.
- W2251818274 crossrefType "proceedings-article" @default.
- W2251818274 hasAuthorship W2251818274A5017455302 @default.
- W2251818274 hasAuthorship W2251818274A5050626617 @default.
- W2251818274 hasAuthorship W2251818274A5060225743 @default.
- W2251818274 hasAuthorship W2251818274A5084505122 @default.
- W2251818274 hasConcept C100660578 @default.
- W2251818274 hasConcept C107673813 @default.
- W2251818274 hasConcept C119857082 @default.
- W2251818274 hasConcept C138885662 @default.
- W2251818274 hasConcept C153701036 @default.
- W2251818274 hasConcept C154945302 @default.
- W2251818274 hasConcept C160234255 @default.
- W2251818274 hasConcept C2776214188 @default.
- W2251818274 hasConcept C2776321320 @default.
- W2251818274 hasConcept C38652104 @default.
- W2251818274 hasConcept C41008148 @default.
- W2251818274 hasConcept C41895202 @default.
- W2251818274 hasConcept C5274069 @default.
- W2251818274 hasConcept C81669768 @default.
- W2251818274 hasConceptScore W2251818274C100660578 @default.
- W2251818274 hasConceptScore W2251818274C107673813 @default.
- W2251818274 hasConceptScore W2251818274C119857082 @default.
- W2251818274 hasConceptScore W2251818274C138885662 @default.
- W2251818274 hasConceptScore W2251818274C153701036 @default.
- W2251818274 hasConceptScore W2251818274C154945302 @default.
- W2251818274 hasConceptScore W2251818274C160234255 @default.
- W2251818274 hasConceptScore W2251818274C2776214188 @default.
- W2251818274 hasConceptScore W2251818274C2776321320 @default.
- W2251818274 hasConceptScore W2251818274C38652104 @default.
- W2251818274 hasConceptScore W2251818274C41008148 @default.
- W2251818274 hasConceptScore W2251818274C41895202 @default.
- W2251818274 hasConceptScore W2251818274C5274069 @default.
- W2251818274 hasConceptScore W2251818274C81669768 @default.
- W2251818274 hasLocation W22518182741 @default.
- W2251818274 hasOpenAccess W2251818274 @default.
- W2251818274 hasPrimaryLocation W22518182741 @default.
- W2251818274 hasRelatedWork W1543648998 @default.
- W2251818274 hasRelatedWork W1840435438 @default.
- W2251818274 hasRelatedWork W1970381522 @default.
- W2251818274 hasRelatedWork W2064675550 @default.
- W2251818274 hasRelatedWork W2112511942 @default.
- W2251818274 hasRelatedWork W2119830539 @default.
- W2251818274 hasRelatedWork W2125943921 @default.
- W2251818274 hasRelatedWork W2134305421 @default.
- W2251818274 hasRelatedWork W2141766660 @default.
- W2251818274 hasRelatedWork W2142518823 @default.
- W2251818274 hasRelatedWork W2144660879 @default.
- W2251818274 hasRelatedWork W2149273804 @default.
- W2251818274 hasRelatedWork W2250539671 @default.
- W2251818274 hasRelatedWork W2295951612 @default.
- W2251818274 hasRelatedWork W2518510348 @default.
- W2251818274 hasRelatedWork W2740579382 @default.
- W2251818274 hasRelatedWork W2963341956 @default.