Matches in SemOpenAlex for { <https://semopenalex.org/work/W2251877103> ?p ?o ?g. }
- W2251877103 abstract "This thesis deals with the separation of mixed speech signals from a single acquisition channel; a problem that is commonly referred to as co-channel speech separation. The goal of the thesis is to present some contributions towards the design and implementation of a robust and enhanced co-channel speech separation system.The phenomenon of co-channel speech commonly occurs due to the combination of speech signals from simultaneous and independent sources into one signal at the receiving microphone, or when two speech signals are transmitted simultaneously over a single channel. An efficient co-channel speech separation system is an important front-end component in many applications such as Automatic Speech Recognition (ASR), Speaker Identification (SID), and hearing aids.The separation process of co-channel speech consists, mainly, of three stages: Analysis, Separation, and Reconstruction. The central separation stage represents the heart of the system in which the target speech is separated from the interfering speech. At the front, since the separation process works on one segment of co-channel speech at a time, a mean must be found in the analysis stage to accurately classify each segment into single or multi-speaker before separation. Precise estimation of each speaker's speech model parameters is another important task in the analysis stage. The speech signal of the desired speaker is finally synthesized from its estimated parameters in the reconstruction stage. In order to have a reliable overall speech separation system, improvements need to be achieved in all three stages.This thesis introduces a classification algorithm that is capable of determining the voicing-state of co-channel speech. The algorithm uses some features of the reconstructed state-space of the speech data as a measure to identify the three voicingstates of co-channel speech; Unvoiced/Unvoiced (U/U), Voiced/Unvoiced (V/U), and Voiced/Voiced (V/V). The proposed method requires neither a priori information nor speech training data. Nonetheless, simulation results show enhanced performance in identifying the three voicing-states at different target-to-interference ratio (TIR) values as well as at different levels of background noise compared to other existing techniques.A time-domain method to precisely estimate the sinusoidal model parameters of co-channel speech is also presented. The method does not require the calculation of the discrete Fourier transform nor the multiplication by a window function which both degrade the estimate of the sinusoidal model parameters. The method incorporates a least-squares estimator and an adaptive technique to model and separate the cochannel speech into its individual speakers. The application of this method on speech data demonstrates the effectiveness of this method in separating co-channel speech signals with different TIRs." @default.
- W2251877103 created "2016-06-24" @default.
- W2251877103 creator A5000391688 @default.
- W2251877103 date "2018-10-04" @default.
- W2251877103 modified "2023-10-07" @default.
- W2251877103 title "Co-channel speech separation using state-space reconstruction and sinusoidal modelling" @default.
- W2251877103 cites W127975155 @default.
- W2251877103 cites W1492221128 @default.
- W2251877103 cites W1495611237 @default.
- W2251877103 cites W1495679096 @default.
- W2251877103 cites W1500640442 @default.
- W2251877103 cites W1549386224 @default.
- W2251877103 cites W1557133539 @default.
- W2251877103 cites W1564393028 @default.
- W2251877103 cites W1639266067 @default.
- W2251877103 cites W165783309 @default.
- W2251877103 cites W18454654 @default.
- W2251877103 cites W1868815422 @default.
- W2251877103 cites W1951870577 @default.
- W2251877103 cites W1964538581 @default.
- W2251877103 cites W1966425161 @default.
- W2251877103 cites W1974196562 @default.
- W2251877103 cites W1975964493 @default.
- W2251877103 cites W1988550194 @default.
- W2251877103 cites W1991139021 @default.
- W2251877103 cites W1995163783 @default.
- W2251877103 cites W1999439604 @default.
- W2251877103 cites W2000356602 @default.
- W2251877103 cites W2004163116 @default.
- W2251877103 cites W2004290058 @default.
- W2251877103 cites W2019661654 @default.
- W2251877103 cites W2027468870 @default.
- W2251877103 cites W2033174849 @default.
- W2251877103 cites W2048359125 @default.
- W2251877103 cites W2072184010 @default.
- W2251877103 cites W2079756844 @default.
- W2251877103 cites W2095638003 @default.
- W2251877103 cites W2096588881 @default.
- W2251877103 cites W2097191389 @default.
- W2251877103 cites W2100198142 @default.
- W2251877103 cites W2100443089 @default.
- W2251877103 cites W2100989275 @default.
- W2251877103 cites W2103408436 @default.
- W2251877103 cites W2105681560 @default.
- W2251877103 cites W2110678343 @default.
- W2251877103 cites W2111070087 @default.
- W2251877103 cites W2111432175 @default.
- W2251877103 cites W2114420883 @default.
- W2251877103 cites W2123649031 @default.
- W2251877103 cites W2127651902 @default.
- W2251877103 cites W2127851351 @default.
- W2251877103 cites W2129895806 @default.
- W2251877103 cites W2130252315 @default.
- W2251877103 cites W2132156178 @default.
- W2251877103 cites W2134128556 @default.
- W2251877103 cites W2135933868 @default.
- W2251877103 cites W2138940226 @default.
- W2251877103 cites W2139106110 @default.
- W2251877103 cites W2141188326 @default.
- W2251877103 cites W2141394518 @default.
- W2251877103 cites W2145665221 @default.
- W2251877103 cites W2146992034 @default.
- W2251877103 cites W2147174722 @default.
- W2251877103 cites W2149095746 @default.
- W2251877103 cites W2149425615 @default.
- W2251877103 cites W2149528081 @default.
- W2251877103 cites W2151012548 @default.
- W2251877103 cites W2151894138 @default.
- W2251877103 cites W2152728141 @default.
- W2251877103 cites W2152831545 @default.
- W2251877103 cites W2153909896 @default.
- W2251877103 cites W2155077238 @default.
- W2251877103 cites W2162601923 @default.
- W2251877103 cites W2170491071 @default.
- W2251877103 cites W2541906428 @default.
- W2251877103 cites W2550493152 @default.
- W2251877103 cites W28743102 @default.
- W2251877103 cites W2906317370 @default.
- W2251877103 cites W29573733 @default.
- W2251877103 cites W3020737195 @default.
- W2251877103 cites W4416539 @default.
- W2251877103 cites W44831635 @default.
- W2251877103 cites W194642393 @default.
- W2251877103 doi "https://doi.org/10.22215/etd/2010-09603" @default.
- W2251877103 hasPublicationYear "2018" @default.
- W2251877103 type Work @default.
- W2251877103 sameAs 2251877103 @default.
- W2251877103 citedByCount "0" @default.
- W2251877103 crossrefType "dissertation" @default.
- W2251877103 hasAuthorship W2251877103A5000391688 @default.
- W2251877103 hasBestOaLocation W22518771031 @default.
- W2251877103 hasConcept C119857082 @default.
- W2251877103 hasConcept C120317606 @default.
- W2251877103 hasConcept C127162648 @default.
- W2251877103 hasConcept C133892786 @default.
- W2251877103 hasConcept C154945302 @default.
- W2251877103 hasConcept C199360897 @default.
- W2251877103 hasConcept C2776061190 @default.
- W2251877103 hasConcept C2776864781 @default.
- W2251877103 hasConcept C2778263558 @default.