Matches in SemOpenAlex for { <https://semopenalex.org/work/W2252761840> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2252761840 abstract "Jefferson, M. F., N. Pendleton, S. Mohamed, E. Kirkman, R. A. Little, S. B. Lucas, and M. A. Horan. Prediction of hemorrhagic blood loss with a genetic algorithm neural network. J. Appl. Physiol. 84(1): 357–361, 1998.—There is no established method for accurately predicting how much blood loss has occurred during hemorrhage. In the present study, we examine whether a genetic algorithm neural network (GANN) can predict volume of hemorrhage in an experimental model in rats and we compare its accuracy to stepwise linear regression (SLR). Serial measurements of heart period; diastolic, systolic, and mean blood pressures; hemoglobin; pH; arterial[Formula: see text]; arterial[Formula: see text]; bicarbonate; base deficit; and blood loss as percent of total estimated blood volume were made in 33 male Wistar rats during a stepwise hemorrhage. The GANN and SLR used a randomly assigned training set to predict actual volume of hemorrhage in a test set. Diastolic blood pressure, arterial[Formula: see text], and base deficit were selected by the GANN as the optimal predictors set. Root mean square error in prediction of estimated blood volume by GANN was significantly lower than by SLR (2.63%, SD 1.44, and 4.22%, SD 3.48, respectively; P < 0.001). A GANN can predict highly accurately and significantly better than SLR volume of hemorrhage without knowledge of prehemorrhage status, rate of blood loss, or trend in physiological variables." @default.
- W2252761840 created "2016-06-24" @default.
- W2252761840 creator A5008737666 @default.
- W2252761840 creator A5015101939 @default.
- W2252761840 creator A5018744368 @default.
- W2252761840 creator A5044094904 @default.
- W2252761840 creator A5058265643 @default.
- W2252761840 creator A5062569543 @default.
- W2252761840 creator A5066251602 @default.
- W2252761840 date "1998-01-01" @default.
- W2252761840 modified "2023-10-14" @default.
- W2252761840 title "Prediction of hemorrhagic blood loss with a genetic algorithm neural network" @default.
- W2252761840 cites W134710876 @default.
- W2252761840 cites W195748540 @default.
- W2252761840 cites W1966680312 @default.
- W2252761840 cites W1993252336 @default.
- W2252761840 cites W2000241167 @default.
- W2252761840 cites W2016708349 @default.
- W2252761840 cites W2020246210 @default.
- W2252761840 cites W2023691053 @default.
- W2252761840 cites W2043439115 @default.
- W2252761840 cites W2051483504 @default.
- W2252761840 cites W2052661232 @default.
- W2252761840 cites W2072245049 @default.
- W2252761840 cites W2072654952 @default.
- W2252761840 cites W2076118331 @default.
- W2252761840 cites W2079083604 @default.
- W2252761840 cites W2084536895 @default.
- W2252761840 cites W2123715374 @default.
- W2252761840 cites W2156133368 @default.
- W2252761840 cites W2299467762 @default.
- W2252761840 doi "https://doi.org/10.1152/jappl.1998.84.1.357" @default.
- W2252761840 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/9451657" @default.
- W2252761840 hasPublicationYear "1998" @default.
- W2252761840 type Work @default.
- W2252761840 sameAs 2252761840 @default.
- W2252761840 citedByCount "15" @default.
- W2252761840 countsByYear W22527618402012 @default.
- W2252761840 countsByYear W22527618402014 @default.
- W2252761840 countsByYear W22527618402015 @default.
- W2252761840 countsByYear W22527618402016 @default.
- W2252761840 countsByYear W22527618402020 @default.
- W2252761840 crossrefType "journal-article" @default.
- W2252761840 hasAuthorship W2252761840A5008737666 @default.
- W2252761840 hasAuthorship W2252761840A5015101939 @default.
- W2252761840 hasAuthorship W2252761840A5018744368 @default.
- W2252761840 hasAuthorship W2252761840A5044094904 @default.
- W2252761840 hasAuthorship W2252761840A5058265643 @default.
- W2252761840 hasAuthorship W2252761840A5062569543 @default.
- W2252761840 hasAuthorship W2252761840A5066251602 @default.
- W2252761840 hasConcept C105795698 @default.
- W2252761840 hasConcept C121332964 @default.
- W2252761840 hasConcept C126322002 @default.
- W2252761840 hasConcept C141071460 @default.
- W2252761840 hasConcept C164705383 @default.
- W2252761840 hasConcept C20556612 @default.
- W2252761840 hasConcept C2778917026 @default.
- W2252761840 hasConcept C2779537118 @default.
- W2252761840 hasConcept C33923547 @default.
- W2252761840 hasConcept C37557685 @default.
- W2252761840 hasConcept C48921125 @default.
- W2252761840 hasConcept C62520636 @default.
- W2252761840 hasConcept C71924100 @default.
- W2252761840 hasConcept C84393581 @default.
- W2252761840 hasConcept C86257020 @default.
- W2252761840 hasConceptScore W2252761840C105795698 @default.
- W2252761840 hasConceptScore W2252761840C121332964 @default.
- W2252761840 hasConceptScore W2252761840C126322002 @default.
- W2252761840 hasConceptScore W2252761840C141071460 @default.
- W2252761840 hasConceptScore W2252761840C164705383 @default.
- W2252761840 hasConceptScore W2252761840C20556612 @default.
- W2252761840 hasConceptScore W2252761840C2778917026 @default.
- W2252761840 hasConceptScore W2252761840C2779537118 @default.
- W2252761840 hasConceptScore W2252761840C33923547 @default.
- W2252761840 hasConceptScore W2252761840C37557685 @default.
- W2252761840 hasConceptScore W2252761840C48921125 @default.
- W2252761840 hasConceptScore W2252761840C62520636 @default.
- W2252761840 hasConceptScore W2252761840C71924100 @default.
- W2252761840 hasConceptScore W2252761840C84393581 @default.
- W2252761840 hasConceptScore W2252761840C86257020 @default.
- W2252761840 hasLocation W22527618401 @default.
- W2252761840 hasLocation W22527618402 @default.
- W2252761840 hasOpenAccess W2252761840 @default.
- W2252761840 hasPrimaryLocation W22527618401 @default.
- W2252761840 hasRelatedWork W1511569502 @default.
- W2252761840 hasRelatedWork W2025615262 @default.
- W2252761840 hasRelatedWork W2028224950 @default.
- W2252761840 hasRelatedWork W2039200481 @default.
- W2252761840 hasRelatedWork W2058587317 @default.
- W2252761840 hasRelatedWork W2348949504 @default.
- W2252761840 hasRelatedWork W2413378986 @default.
- W2252761840 hasRelatedWork W2416567420 @default.
- W2252761840 hasRelatedWork W2428388840 @default.
- W2252761840 hasRelatedWork W2912632560 @default.
- W2252761840 isParatext "false" @default.
- W2252761840 isRetracted "false" @default.
- W2252761840 magId "2252761840" @default.
- W2252761840 workType "article" @default.