Matches in SemOpenAlex for { <https://semopenalex.org/work/W2252921891> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2252921891 abstract "Much of information sits in an unprecedented amount of text data. Managing allocation of these large scale text data is an important problem for many areas. Topic modeling performs well in this problem. The traditional generative models (PLSA,LDA) are the state-of-the-art approaches in topic modeling and most recent research on topic generation has been focusing on improving or extending these models. However, results of traditional generative models are sensitive to the number of topics K, which must be specified manually. The problem of generating topics from corpus resembles community detection in networks. Many effective algorithms can automatically detect communities from networks without a manually specified number of the communities. Inspired by these algorithms, in this paper, we propose a novel method named Hierarchical Latent Semantic Mapping (HLSM), which automatically generates topics from corpus. HLSM calculates the association between each pair of words in the latent topic space, then constructs a unipartite network of words with this association and hierarchically generates topics from this network. We apply HLSM to several document collections and the experimental comparisons against several state-of-the-art approaches demonstrate the promising performance." @default.
- W2252921891 created "2016-06-24" @default.
- W2252921891 creator A5044782063 @default.
- W2252921891 creator A5045551177 @default.
- W2252921891 date "2015-11-11" @default.
- W2252921891 modified "2023-09-27" @default.
- W2252921891 title "Hierarchical Latent Semantic Mapping for Automated Topic Generation" @default.
- W2252921891 cites W1743429370 @default.
- W2252921891 cites W1880262756 @default.
- W2252921891 cites W2001932471 @default.
- W2252921891 cites W2056828017 @default.
- W2252921891 cites W2072644219 @default.
- W2252921891 cites W2103587173 @default.
- W2252921891 cites W2107743791 @default.
- W2252921891 cites W2150286230 @default.
- W2252921891 cites W2154463838 @default.
- W2252921891 cites W2164998314 @default.
- W2252921891 cites W2170106220 @default.
- W2252921891 cites W2963459858 @default.
- W2252921891 doi "https://doi.org/10.48550/arxiv.1511.03546" @default.
- W2252921891 hasPublicationYear "2015" @default.
- W2252921891 type Work @default.
- W2252921891 sameAs 2252921891 @default.
- W2252921891 citedByCount "0" @default.
- W2252921891 crossrefType "posted-content" @default.
- W2252921891 hasAuthorship W2252921891A5044782063 @default.
- W2252921891 hasAuthorship W2252921891A5045551177 @default.
- W2252921891 hasBestOaLocation W22529218911 @default.
- W2252921891 hasConcept C108583219 @default.
- W2252921891 hasConcept C112933361 @default.
- W2252921891 hasConcept C119857082 @default.
- W2252921891 hasConcept C124101348 @default.
- W2252921891 hasConcept C154945302 @default.
- W2252921891 hasConcept C167966045 @default.
- W2252921891 hasConcept C170133592 @default.
- W2252921891 hasConcept C171686336 @default.
- W2252921891 hasConcept C204321447 @default.
- W2252921891 hasConcept C23123220 @default.
- W2252921891 hasConcept C2988773926 @default.
- W2252921891 hasConcept C39890363 @default.
- W2252921891 hasConcept C41008148 @default.
- W2252921891 hasConcept C500882744 @default.
- W2252921891 hasConcept C85407183 @default.
- W2252921891 hasConceptScore W2252921891C108583219 @default.
- W2252921891 hasConceptScore W2252921891C112933361 @default.
- W2252921891 hasConceptScore W2252921891C119857082 @default.
- W2252921891 hasConceptScore W2252921891C124101348 @default.
- W2252921891 hasConceptScore W2252921891C154945302 @default.
- W2252921891 hasConceptScore W2252921891C167966045 @default.
- W2252921891 hasConceptScore W2252921891C170133592 @default.
- W2252921891 hasConceptScore W2252921891C171686336 @default.
- W2252921891 hasConceptScore W2252921891C204321447 @default.
- W2252921891 hasConceptScore W2252921891C23123220 @default.
- W2252921891 hasConceptScore W2252921891C2988773926 @default.
- W2252921891 hasConceptScore W2252921891C39890363 @default.
- W2252921891 hasConceptScore W2252921891C41008148 @default.
- W2252921891 hasConceptScore W2252921891C500882744 @default.
- W2252921891 hasConceptScore W2252921891C85407183 @default.
- W2252921891 hasLocation W22529218911 @default.
- W2252921891 hasOpenAccess W2252921891 @default.
- W2252921891 hasPrimaryLocation W22529218911 @default.
- W2252921891 hasRelatedWork W2164564519 @default.
- W2252921891 hasRelatedWork W2252921891 @default.
- W2252921891 hasRelatedWork W2354429408 @default.
- W2252921891 hasRelatedWork W2390209509 @default.
- W2252921891 hasRelatedWork W2392395313 @default.
- W2252921891 hasRelatedWork W2710805143 @default.
- W2252921891 hasRelatedWork W2884815824 @default.
- W2252921891 hasRelatedWork W3047601251 @default.
- W2252921891 hasRelatedWork W4230907100 @default.
- W2252921891 hasRelatedWork W2182039757 @default.
- W2252921891 isParatext "false" @default.
- W2252921891 isRetracted "false" @default.
- W2252921891 magId "2252921891" @default.
- W2252921891 workType "article" @default.