Matches in SemOpenAlex for { <https://semopenalex.org/work/W2253134764> ?p ?o ?g. }
- W2253134764 abstract "Laminar population analysis (LPA) is a method for analysis of electrical data recorded by linear multielectrodes passing through all lamina of cortex. Like principal components analysis (PCA) and independent components analysis (ICA), LPA offers a way to decompose the data into contributions from separate cortical populations. However, instead of using purely mathematical assumptions in the decomposition, LPA is based on physiological constraints, i.e., that the observed LFP (low-frequency part of signal) is driven by action-potential firing as observed in the MUA (multi-unit activity; high-frequency part of the signal). In the presently developed generalized laminar population analysis (gLPA) the set of basis functions accounting for the LFP data is extended compared to the original LPA, thus allowing for a better fit of the model to experimental data. This enhances the risk for overfitting, however, and we therefore tested various versions of gLPA on virtual LFP data in which we knew the ground truth. These synthetic data were generated by biophysical forward-modelling of electrical signals from network activity in the comprehensive, and well-known, thalamocortical network model developed by Traub and coworkers. The results for the Traub model imply that while the laminar components extracted by original LPA method overall are in fair agreement with the ground-truth laminar components, the results may be improved by use of gLPA method with two (gLPA-2) or even three (gLPA-3) postsynaptic LFP kernels per laminar population." @default.
- W2253134764 created "2016-06-24" @default.
- W2253134764 creator A5011415183 @default.
- W2253134764 creator A5032715711 @default.
- W2253134764 creator A5044986793 @default.
- W2253134764 creator A5073099395 @default.
- W2253134764 creator A5074707381 @default.
- W2253134764 creator A5087626511 @default.
- W2253134764 date "2016-01-25" @default.
- W2253134764 modified "2023-10-13" @default.
- W2253134764 title "Generalized Laminar Population Analysis (gLPA) for Interpretation of Multielectrode Data from Cortex" @default.
- W2253134764 cites W1243663029 @default.
- W2253134764 cites W1703189469 @default.
- W2253134764 cites W1850752598 @default.
- W2253134764 cites W1873383122 @default.
- W2253134764 cites W1966401487 @default.
- W2253134764 cites W1973275441 @default.
- W2253134764 cites W1974992743 @default.
- W2253134764 cites W1978744523 @default.
- W2253134764 cites W2007495909 @default.
- W2253134764 cites W2013186737 @default.
- W2253134764 cites W2016844172 @default.
- W2253134764 cites W2028866298 @default.
- W2253134764 cites W2029187874 @default.
- W2253134764 cites W2041959530 @default.
- W2253134764 cites W2046152692 @default.
- W2253134764 cites W2049517674 @default.
- W2253134764 cites W2050943404 @default.
- W2253134764 cites W2067702957 @default.
- W2253134764 cites W2076806187 @default.
- W2253134764 cites W2096935768 @default.
- W2253134764 cites W2105927641 @default.
- W2253134764 cites W2106203611 @default.
- W2253134764 cites W2111736228 @default.
- W2253134764 cites W2115545080 @default.
- W2253134764 cites W2117120818 @default.
- W2253134764 cites W2122227532 @default.
- W2253134764 cites W2142635246 @default.
- W2253134764 cites W2147576365 @default.
- W2253134764 cites W2152939169 @default.
- W2253134764 cites W2165586822 @default.
- W2253134764 cites W2168175751 @default.
- W2253134764 cites W2169619863 @default.
- W2253134764 cites W21769058 @default.
- W2253134764 cites W2337884797 @default.
- W2253134764 cites W2483450693 @default.
- W2253134764 cites W819231701 @default.
- W2253134764 doi "https://doi.org/10.3389/fninf.2016.00001" @default.
- W2253134764 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4724720" @default.
- W2253134764 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26834620" @default.
- W2253134764 hasPublicationYear "2016" @default.
- W2253134764 type Work @default.
- W2253134764 sameAs 2253134764 @default.
- W2253134764 citedByCount "17" @default.
- W2253134764 countsByYear W22531347642016 @default.
- W2253134764 countsByYear W22531347642017 @default.
- W2253134764 countsByYear W22531347642018 @default.
- W2253134764 countsByYear W22531347642019 @default.
- W2253134764 countsByYear W22531347642020 @default.
- W2253134764 countsByYear W22531347642021 @default.
- W2253134764 countsByYear W22531347642022 @default.
- W2253134764 crossrefType "journal-article" @default.
- W2253134764 hasAuthorship W2253134764A5011415183 @default.
- W2253134764 hasAuthorship W2253134764A5032715711 @default.
- W2253134764 hasAuthorship W2253134764A5044986793 @default.
- W2253134764 hasAuthorship W2253134764A5073099395 @default.
- W2253134764 hasAuthorship W2253134764A5074707381 @default.
- W2253134764 hasAuthorship W2253134764A5087626511 @default.
- W2253134764 hasBestOaLocation W22531347641 @default.
- W2253134764 hasConcept C121332964 @default.
- W2253134764 hasConcept C144024400 @default.
- W2253134764 hasConcept C146849305 @default.
- W2253134764 hasConcept C149923435 @default.
- W2253134764 hasConcept C153180895 @default.
- W2253134764 hasConcept C154945302 @default.
- W2253134764 hasConcept C186060115 @default.
- W2253134764 hasConcept C199360897 @default.
- W2253134764 hasConcept C22019652 @default.
- W2253134764 hasConcept C2779843651 @default.
- W2253134764 hasConcept C2908647359 @default.
- W2253134764 hasConcept C41008148 @default.
- W2253134764 hasConcept C50644808 @default.
- W2253134764 hasConcept C58489278 @default.
- W2253134764 hasConcept C76563973 @default.
- W2253134764 hasConcept C86803240 @default.
- W2253134764 hasConcept C97355855 @default.
- W2253134764 hasConceptScore W2253134764C121332964 @default.
- W2253134764 hasConceptScore W2253134764C144024400 @default.
- W2253134764 hasConceptScore W2253134764C146849305 @default.
- W2253134764 hasConceptScore W2253134764C149923435 @default.
- W2253134764 hasConceptScore W2253134764C153180895 @default.
- W2253134764 hasConceptScore W2253134764C154945302 @default.
- W2253134764 hasConceptScore W2253134764C186060115 @default.
- W2253134764 hasConceptScore W2253134764C199360897 @default.
- W2253134764 hasConceptScore W2253134764C22019652 @default.
- W2253134764 hasConceptScore W2253134764C2779843651 @default.
- W2253134764 hasConceptScore W2253134764C2908647359 @default.
- W2253134764 hasConceptScore W2253134764C41008148 @default.
- W2253134764 hasConceptScore W2253134764C50644808 @default.
- W2253134764 hasConceptScore W2253134764C58489278 @default.