Matches in SemOpenAlex for { <https://semopenalex.org/work/W2254470215> ?p ?o ?g. }
- W2254470215 endingPage "115" @default.
- W2254470215 startingPage "99" @default.
- W2254470215 abstract "The geostatistical technique of Kriging has extensively been used for the investigation and delineation of soil heavy metal pollution. Kriging is rarely used in practical circumstances, however, because the parameter values are difficult to decide and relatively optimal locations for further sampling are difficult to find. In this study, we used large numbers of assumed actual polluted fields (AAPFs) randomly generated by unconditional simulation (US) to assess the adjusted total fee (ATF), an assessment standard developed for balancing the correct treatment rate (CTR) and total fee (TF), based on a traditional strategy of systematic (or uniform) grid sampling (SGS) and Kriging. We found that a strategy using both SGS and Kriging was more cost-effective than a strategy using only SGS. Next, we used a genetic algorithm (GA) approach to find optimal locations for the additional sampling. We found that the optimized locations for the additional sampling were at the joint districts of polluted areas and unpolluted areas, where abundant SGS data appeared near the threshold value. This strategy was less helpful, however, when the pollution of polluted fields showed no spatial correlation." @default.
- W2254470215 created "2016-06-24" @default.
- W2254470215 creator A5010229793 @default.
- W2254470215 creator A5042970019 @default.
- W2254470215 creator A5049825872 @default.
- W2254470215 creator A5081593114 @default.
- W2254470215 date "2016-01-01" @default.
- W2254470215 modified "2023-10-01" @default.
- W2254470215 title "Cost-Effective Strategy for the Investigation and Remediation of Polluted Soil Using Geostatistics and a Genetic Algorithm Approach" @default.
- W2254470215 cites W113098347 @default.
- W2254470215 cites W1533982031 @default.
- W2254470215 cites W1968303578 @default.
- W2254470215 cites W1972000617 @default.
- W2254470215 cites W1972520854 @default.
- W2254470215 cites W1974285157 @default.
- W2254470215 cites W1974338677 @default.
- W2254470215 cites W1975230218 @default.
- W2254470215 cites W1975533145 @default.
- W2254470215 cites W1977062416 @default.
- W2254470215 cites W1988841210 @default.
- W2254470215 cites W1989015383 @default.
- W2254470215 cites W1990711631 @default.
- W2254470215 cites W1991315427 @default.
- W2254470215 cites W1991474992 @default.
- W2254470215 cites W2001202218 @default.
- W2254470215 cites W2009810657 @default.
- W2254470215 cites W2019352701 @default.
- W2254470215 cites W2020579434 @default.
- W2254470215 cites W2023318812 @default.
- W2254470215 cites W2025533496 @default.
- W2254470215 cites W2027235936 @default.
- W2254470215 cites W2028368663 @default.
- W2254470215 cites W2030131479 @default.
- W2254470215 cites W2037861984 @default.
- W2254470215 cites W2045097183 @default.
- W2254470215 cites W2050137605 @default.
- W2254470215 cites W2050831818 @default.
- W2254470215 cites W2051814952 @default.
- W2254470215 cites W2052888637 @default.
- W2254470215 cites W2065847076 @default.
- W2254470215 cites W2065958177 @default.
- W2254470215 cites W2073059691 @default.
- W2254470215 cites W2077375835 @default.
- W2254470215 cites W2083568166 @default.
- W2254470215 cites W2094873893 @default.
- W2254470215 cites W2110962048 @default.
- W2254470215 cites W2113504646 @default.
- W2254470215 cites W2119793105 @default.
- W2254470215 cites W2143889354 @default.
- W2254470215 cites W2143953506 @default.
- W2254470215 cites W2168692957 @default.
- W2254470215 cites W2223078256 @default.
- W2254470215 cites W2317200742 @default.
- W2254470215 cites W2317400929 @default.
- W2254470215 doi "https://doi.org/10.4236/jep.2016.71010" @default.
- W2254470215 hasPublicationYear "2016" @default.
- W2254470215 type Work @default.
- W2254470215 sameAs 2254470215 @default.
- W2254470215 citedByCount "6" @default.
- W2254470215 countsByYear W22544702152016 @default.
- W2254470215 countsByYear W22544702152017 @default.
- W2254470215 countsByYear W22544702152019 @default.
- W2254470215 countsByYear W22544702152020 @default.
- W2254470215 countsByYear W22544702152021 @default.
- W2254470215 countsByYear W22544702152022 @default.
- W2254470215 crossrefType "journal-article" @default.
- W2254470215 hasAuthorship W2254470215A5010229793 @default.
- W2254470215 hasAuthorship W2254470215A5042970019 @default.
- W2254470215 hasAuthorship W2254470215A5049825872 @default.
- W2254470215 hasAuthorship W2254470215A5081593114 @default.
- W2254470215 hasBestOaLocation W22544702151 @default.
- W2254470215 hasConcept C105795698 @default.
- W2254470215 hasConcept C106131492 @default.
- W2254470215 hasConcept C11413529 @default.
- W2254470215 hasConcept C125572338 @default.
- W2254470215 hasConcept C126255220 @default.
- W2254470215 hasConcept C140779682 @default.
- W2254470215 hasConcept C18903297 @default.
- W2254470215 hasConcept C31972630 @default.
- W2254470215 hasConcept C33923547 @default.
- W2254470215 hasConcept C39432304 @default.
- W2254470215 hasConcept C41008148 @default.
- W2254470215 hasConcept C521259446 @default.
- W2254470215 hasConcept C81692654 @default.
- W2254470215 hasConcept C86803240 @default.
- W2254470215 hasConcept C8880873 @default.
- W2254470215 hasConcept C94747663 @default.
- W2254470215 hasConceptScore W2254470215C105795698 @default.
- W2254470215 hasConceptScore W2254470215C106131492 @default.
- W2254470215 hasConceptScore W2254470215C11413529 @default.
- W2254470215 hasConceptScore W2254470215C125572338 @default.
- W2254470215 hasConceptScore W2254470215C126255220 @default.
- W2254470215 hasConceptScore W2254470215C140779682 @default.
- W2254470215 hasConceptScore W2254470215C18903297 @default.
- W2254470215 hasConceptScore W2254470215C31972630 @default.
- W2254470215 hasConceptScore W2254470215C33923547 @default.
- W2254470215 hasConceptScore W2254470215C39432304 @default.
- W2254470215 hasConceptScore W2254470215C41008148 @default.