Matches in SemOpenAlex for { <https://semopenalex.org/work/W2254720005> ?p ?o ?g. }
- W2254720005 abstract "The entanglement entropy in many gapless quantum systems receives a contribution from the corners in the entangling surface in 2+1d, which is characterized by a universal function $a(ensuremath{theta})$ depending on the opening angle $ensuremath{theta}$, and contains pertinent low energy information. For conformal field theories (CFTs), the leading expansion coefficient in the smooth limit $ensuremath{theta}ensuremath{rightarrow}ensuremath{pi}$ yields the stress tensor two-point function coefficient ${C}_{T}$. Little is known about $a(ensuremath{theta})$ beyond that limit. Here, we show that the next term in the smooth limit expansion contains information beyond the two- and three-point correlators of the stress tensor. We conjecture that it encodes four-point data, making it much richer. Further, we establish strong constraints on this and higher-order smooth-limit coefficients. We also show that $a(ensuremath{theta})$ is lower-bounded by a nontrivial function multiplied by the central charge ${C}_{T}$, e.g., $a(ensuremath{pi}/2)ensuremath{ge}({ensuremath{pi}}^{2}ln2){C}_{T}/6$. This bound for 90-degree corners is nearly saturated by all known results, including recent numerics for the interacting Wilson-Fisher quantum critical points (QCPs). A bound is also given for the R'enyi entropies. We illustrate our findings using $text{O}(N)$ QCPs, free boson and Dirac fermion CFTs, strongly coupled holographic ones, and other models. Exact results are also given for Lifshitz quantum critical points, and for conical singularities in 3+1d." @default.
- W2254720005 created "2016-06-24" @default.
- W2254720005 creator A5009939994 @default.
- W2254720005 creator A5016488881 @default.
- W2254720005 date "2016-01-25" @default.
- W2254720005 modified "2023-09-27" @default.
- W2254720005 title "Bounds on corner entanglement in quantum critical states" @default.
- W2254720005 cites W132918488 @default.
- W2254720005 cites W1557924695 @default.
- W2254720005 cites W1565112435 @default.
- W2254720005 cites W1590232364 @default.
- W2254720005 cites W1740513949 @default.
- W2254720005 cites W1814427056 @default.
- W2254720005 cites W1835203299 @default.
- W2254720005 cites W1845358362 @default.
- W2254720005 cites W1852675795 @default.
- W2254720005 cites W1888321505 @default.
- W2254720005 cites W1948389526 @default.
- W2254720005 cites W1965330258 @default.
- W2254720005 cites W1965953095 @default.
- W2254720005 cites W1972467964 @default.
- W2254720005 cites W1977928007 @default.
- W2254720005 cites W1978518864 @default.
- W2254720005 cites W1990045935 @default.
- W2254720005 cites W1993289500 @default.
- W2254720005 cites W2000573282 @default.
- W2254720005 cites W2001528655 @default.
- W2254720005 cites W2007634753 @default.
- W2254720005 cites W2013681083 @default.
- W2254720005 cites W2018194981 @default.
- W2254720005 cites W2019024022 @default.
- W2254720005 cites W2019811555 @default.
- W2254720005 cites W2022074615 @default.
- W2254720005 cites W2025308435 @default.
- W2254720005 cites W2032834828 @default.
- W2254720005 cites W2032928561 @default.
- W2254720005 cites W2034493186 @default.
- W2254720005 cites W2038925715 @default.
- W2254720005 cites W2046439097 @default.
- W2254720005 cites W2054766688 @default.
- W2254720005 cites W2058432278 @default.
- W2254720005 cites W2061543631 @default.
- W2254720005 cites W2065666121 @default.
- W2254720005 cites W2067187311 @default.
- W2254720005 cites W2069840277 @default.
- W2254720005 cites W2072330883 @default.
- W2254720005 cites W2081265834 @default.
- W2254720005 cites W2082257352 @default.
- W2254720005 cites W2082747612 @default.
- W2254720005 cites W2090217208 @default.
- W2254720005 cites W2100769649 @default.
- W2254720005 cites W2110283120 @default.
- W2254720005 cites W2113784378 @default.
- W2254720005 cites W2116056895 @default.
- W2254720005 cites W2118564312 @default.
- W2254720005 cites W2120998799 @default.
- W2254720005 cites W2130448398 @default.
- W2254720005 cites W2142534591 @default.
- W2254720005 cites W2148545876 @default.
- W2254720005 cites W2161021349 @default.
- W2254720005 cites W2192967504 @default.
- W2254720005 cites W2205050027 @default.
- W2254720005 cites W2760860222 @default.
- W2254720005 cites W2990961515 @default.
- W2254720005 cites W3000019265 @default.
- W2254720005 cites W3098454649 @default.
- W2254720005 cites W3098603053 @default.
- W2254720005 cites W3099026117 @default.
- W2254720005 cites W3099457722 @default.
- W2254720005 cites W3099687179 @default.
- W2254720005 cites W3100057814 @default.
- W2254720005 cites W3100613786 @default.
- W2254720005 cites W3102551146 @default.
- W2254720005 cites W3102806724 @default.
- W2254720005 cites W3103539689 @default.
- W2254720005 cites W3103688923 @default.
- W2254720005 cites W3104808098 @default.
- W2254720005 cites W3121236311 @default.
- W2254720005 cites W3122099929 @default.
- W2254720005 cites W3122687721 @default.
- W2254720005 cites W3125830317 @default.
- W2254720005 cites W4244464636 @default.
- W2254720005 doi "https://doi.org/10.1103/physrevb.93.045131" @default.
- W2254720005 hasPublicationYear "2016" @default.
- W2254720005 type Work @default.
- W2254720005 sameAs 2254720005 @default.
- W2254720005 citedByCount "31" @default.
- W2254720005 countsByYear W22547200052016 @default.
- W2254720005 countsByYear W22547200052017 @default.
- W2254720005 countsByYear W22547200052019 @default.
- W2254720005 countsByYear W22547200052021 @default.
- W2254720005 countsByYear W22547200052022 @default.
- W2254720005 countsByYear W22547200052023 @default.
- W2254720005 crossrefType "journal-article" @default.
- W2254720005 hasAuthorship W2254720005A5009939994 @default.
- W2254720005 hasAuthorship W2254720005A5016488881 @default.
- W2254720005 hasBestOaLocation W22547200051 @default.
- W2254720005 hasConcept C121040770 @default.
- W2254720005 hasConcept C121332964 @default.
- W2254720005 hasConcept C12843 @default.