Matches in SemOpenAlex for { <https://semopenalex.org/work/W2255282663> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2255282663 abstract "Two competing analytical approaches, namely, the generalized method of moments (GMM) and quasi-maximum likelihood (QML) are widely used in statistics and econometrics literature for inferences in stochastic volatility models (SVMs). Alternative numerical approaches such as Markov chain Monte Carlo (MCMC), simulated maximum likelihood (SML) and Bayesian approaches are also available. All these later approaches are, however, based on simulations. Tagore (2010) revisited the analytical estimation approaches and proposed simpler and more efficient method of moments (MM) and approximate GQL (AGQL) inferences for the estimation of the volatility parameters. However, Tagore (2010) did not consider the estimation of the intercept parameter (γ0) in the SV model, and also the model was confined to the normal based errors only. -- In this thesis, we first extend Tagore's MM and AGQL approaches (Tagore 2010) to the estimation of all parameters of the SV model including the so-called intercept parameter γ0. Second, we modify the existing QML approach and unlike Tagore (2010) include this approach in the simulation study. Furthermore, all three approaches are applied to analyze a real life dataset. -- Next, we consider a t-distribution based SV model, and apply the aforementioned estimation approaches for all parameters including a new degrees of freedom parameter of the t-distribution. Simulation studies are conducted to examine the relative performances of the estimation approaches. We also compute the kurtosis of the t-distribution based SV models and make an exact comparison with those of normal distribution based SV models. The estimation effect of parameters on the kurtosis is given for a special case." @default.
- W2255282663 created "2016-06-24" @default.
- W2255282663 creator A5045058632 @default.
- W2255282663 date "2013-01-01" @default.
- W2255282663 modified "2023-09-24" @default.
- W2255282663 title "Inference in stochastic volatility models for Gaussian and t data" @default.
- W2255282663 hasPublicationYear "2013" @default.
- W2255282663 type Work @default.
- W2255282663 sameAs 2255282663 @default.
- W2255282663 citedByCount "0" @default.
- W2255282663 crossrefType "dissertation" @default.
- W2255282663 hasAuthorship W2255282663A5045058632 @default.
- W2255282663 hasConcept C105795698 @default.
- W2255282663 hasConcept C111350023 @default.
- W2255282663 hasConcept C149782125 @default.
- W2255282663 hasConcept C154945302 @default.
- W2255282663 hasConcept C166963901 @default.
- W2255282663 hasConcept C167928553 @default.
- W2255282663 hasConcept C185429906 @default.
- W2255282663 hasConcept C19499675 @default.
- W2255282663 hasConcept C2776214188 @default.
- W2255282663 hasConcept C2779793024 @default.
- W2255282663 hasConcept C28826006 @default.
- W2255282663 hasConcept C33923547 @default.
- W2255282663 hasConcept C41008148 @default.
- W2255282663 hasConcept C85393063 @default.
- W2255282663 hasConcept C91602232 @default.
- W2255282663 hasConceptScore W2255282663C105795698 @default.
- W2255282663 hasConceptScore W2255282663C111350023 @default.
- W2255282663 hasConceptScore W2255282663C149782125 @default.
- W2255282663 hasConceptScore W2255282663C154945302 @default.
- W2255282663 hasConceptScore W2255282663C166963901 @default.
- W2255282663 hasConceptScore W2255282663C167928553 @default.
- W2255282663 hasConceptScore W2255282663C185429906 @default.
- W2255282663 hasConceptScore W2255282663C19499675 @default.
- W2255282663 hasConceptScore W2255282663C2776214188 @default.
- W2255282663 hasConceptScore W2255282663C2779793024 @default.
- W2255282663 hasConceptScore W2255282663C28826006 @default.
- W2255282663 hasConceptScore W2255282663C33923547 @default.
- W2255282663 hasConceptScore W2255282663C41008148 @default.
- W2255282663 hasConceptScore W2255282663C85393063 @default.
- W2255282663 hasConceptScore W2255282663C91602232 @default.
- W2255282663 hasLocation W22552826631 @default.
- W2255282663 hasOpenAccess W2255282663 @default.
- W2255282663 hasPrimaryLocation W22552826631 @default.
- W2255282663 hasRelatedWork W1788616518 @default.
- W2255282663 hasRelatedWork W1907582664 @default.
- W2255282663 hasRelatedWork W2032554831 @default.
- W2255282663 hasRelatedWork W2078051489 @default.
- W2255282663 hasRelatedWork W2161173543 @default.
- W2255282663 hasRelatedWork W2235200468 @default.
- W2255282663 hasRelatedWork W2281249772 @default.
- W2255282663 hasRelatedWork W2296798503 @default.
- W2255282663 hasRelatedWork W2603590941 @default.
- W2255282663 hasRelatedWork W2757830207 @default.
- W2255282663 hasRelatedWork W2770729853 @default.
- W2255282663 hasRelatedWork W2949486683 @default.
- W2255282663 hasRelatedWork W2962929207 @default.
- W2255282663 hasRelatedWork W2986931787 @default.
- W2255282663 hasRelatedWork W3121308877 @default.
- W2255282663 hasRelatedWork W3124177643 @default.
- W2255282663 hasRelatedWork W3140751257 @default.
- W2255282663 hasRelatedWork W3161314517 @default.
- W2255282663 hasRelatedWork W3203470213 @default.
- W2255282663 hasRelatedWork W3207266958 @default.
- W2255282663 isParatext "false" @default.
- W2255282663 isRetracted "false" @default.
- W2255282663 magId "2255282663" @default.
- W2255282663 workType "dissertation" @default.