Matches in SemOpenAlex for { <https://semopenalex.org/work/W2255509432> ?p ?o ?g. }
- W2255509432 endingPage "6535" @default.
- W2255509432 startingPage "6523" @default.
- W2255509432 abstract "Identification of Hammerstein nonlinear models has received much attention due to its ability to describe a wide variety of nonlinear systems. This paper considers the parameter estimation problem of ARMAX models for the Hammerstein systems. The recursive maximum likelihood method, which can be applied to online identification and occupies small memory capacity, is proposed to deal with the problem in here. It is an approximation of the maximum likelihood method. The parameters of the linear and nonlinear parts of the Hammerstein model and the noise model can be directly obtained without using the overparameterization technique. Finally, the proposed method is applied to a classic Hammerstein ARMAX system and is compared with RLS method in detail. The research results show the effectiveness of the proposed method." @default.
- W2255509432 created "2016-06-24" @default.
- W2255509432 creator A5034516630 @default.
- W2255509432 creator A5090764760 @default.
- W2255509432 date "2016-07-01" @default.
- W2255509432 modified "2023-10-13" @default.
- W2255509432 title "Recursive maximum likelihood method for the identification of Hammerstein ARMAX system" @default.
- W2255509432 cites W1968143451 @default.
- W2255509432 cites W1971630942 @default.
- W2255509432 cites W1974824920 @default.
- W2255509432 cites W1975872257 @default.
- W2255509432 cites W1980759970 @default.
- W2255509432 cites W1981949547 @default.
- W2255509432 cites W1982568349 @default.
- W2255509432 cites W1985994615 @default.
- W2255509432 cites W1991244924 @default.
- W2255509432 cites W1992934372 @default.
- W2255509432 cites W1995915659 @default.
- W2255509432 cites W1998710981 @default.
- W2255509432 cites W2000681309 @default.
- W2255509432 cites W2001372535 @default.
- W2255509432 cites W2003177232 @default.
- W2255509432 cites W2014140822 @default.
- W2255509432 cites W2021395081 @default.
- W2255509432 cites W2029430854 @default.
- W2255509432 cites W2029686441 @default.
- W2255509432 cites W2034297074 @default.
- W2255509432 cites W2062881616 @default.
- W2255509432 cites W2063350122 @default.
- W2255509432 cites W2068045302 @default.
- W2255509432 cites W2074246024 @default.
- W2255509432 cites W2076212667 @default.
- W2255509432 cites W2076974285 @default.
- W2255509432 cites W2079744160 @default.
- W2255509432 cites W2081056570 @default.
- W2255509432 cites W2082796236 @default.
- W2255509432 cites W2087113313 @default.
- W2255509432 cites W2089709275 @default.
- W2255509432 cites W2090636411 @default.
- W2255509432 cites W2091590655 @default.
- W2255509432 cites W2102249043 @default.
- W2255509432 cites W2105629209 @default.
- W2255509432 cites W2119016079 @default.
- W2255509432 cites W2125733767 @default.
- W2255509432 cites W2137691086 @default.
- W2255509432 cites W2144567492 @default.
- W2255509432 cites W2150800698 @default.
- W2255509432 cites W2152366492 @default.
- W2255509432 cites W2158205913 @default.
- W2255509432 cites W2164019650 @default.
- W2255509432 cites W2165628062 @default.
- W2255509432 cites W2758398298 @default.
- W2255509432 doi "https://doi.org/10.1016/j.apm.2016.01.062" @default.
- W2255509432 hasPublicationYear "2016" @default.
- W2255509432 type Work @default.
- W2255509432 sameAs 2255509432 @default.
- W2255509432 citedByCount "33" @default.
- W2255509432 countsByYear W22555094322016 @default.
- W2255509432 countsByYear W22555094322017 @default.
- W2255509432 countsByYear W22555094322018 @default.
- W2255509432 countsByYear W22555094322019 @default.
- W2255509432 countsByYear W22555094322020 @default.
- W2255509432 countsByYear W22555094322021 @default.
- W2255509432 countsByYear W22555094322023 @default.
- W2255509432 crossrefType "journal-article" @default.
- W2255509432 hasAuthorship W2255509432A5034516630 @default.
- W2255509432 hasAuthorship W2255509432A5090764760 @default.
- W2255509432 hasBestOaLocation W22555094321 @default.
- W2255509432 hasConcept C105795698 @default.
- W2255509432 hasConcept C11413529 @default.
- W2255509432 hasConcept C115961682 @default.
- W2255509432 hasConcept C116834253 @default.
- W2255509432 hasConcept C119247159 @default.
- W2255509432 hasConcept C121332964 @default.
- W2255509432 hasConcept C126255220 @default.
- W2255509432 hasConcept C154945302 @default.
- W2255509432 hasConcept C158622935 @default.
- W2255509432 hasConcept C167928553 @default.
- W2255509432 hasConcept C191462741 @default.
- W2255509432 hasConcept C2775924081 @default.
- W2255509432 hasConcept C28826006 @default.
- W2255509432 hasConcept C2983447341 @default.
- W2255509432 hasConcept C33923547 @default.
- W2255509432 hasConcept C41008148 @default.
- W2255509432 hasConcept C47446073 @default.
- W2255509432 hasConcept C49781872 @default.
- W2255509432 hasConcept C59822182 @default.
- W2255509432 hasConcept C62520636 @default.
- W2255509432 hasConcept C67186912 @default.
- W2255509432 hasConcept C77088390 @default.
- W2255509432 hasConcept C79610928 @default.
- W2255509432 hasConcept C86803240 @default.
- W2255509432 hasConcept C99498987 @default.
- W2255509432 hasConceptScore W2255509432C105795698 @default.
- W2255509432 hasConceptScore W2255509432C11413529 @default.
- W2255509432 hasConceptScore W2255509432C115961682 @default.
- W2255509432 hasConceptScore W2255509432C116834253 @default.
- W2255509432 hasConceptScore W2255509432C119247159 @default.