Matches in SemOpenAlex for { <https://semopenalex.org/work/W2255548690> ?p ?o ?g. }
- W2255548690 endingPage "286" @default.
- W2255548690 startingPage "272" @default.
- W2255548690 abstract "Many computer vision and medical imaging problems are faced with learning from large-scale datasets, with millions of observations and features. In this paper we propose a novel efficient learning scheme that tightens a sparsity constraint by gradually removing variables based on a criterion and a schedule. The attractive fact that the problem size keeps dropping throughout the iterations makes it particularly suitable for big data learning. Our approach applies generically to the optimization of any differentiable loss function, and finds applications in regression, classification and ranking. The resultant algorithms build variable screening into estimation and are extremely simple to implement. We provide theoretical guarantees of convergence and selection consistency. In addition, one dimensional piecewise linear response functions are used to account for nonlinearity and a second order prior is imposed on these functions to avoid overfitting. Experiments on real and synthetic data show that the proposed method compares very well with other state of the art methods in regression, classification and ranking while being computationally very efficient and scalable." @default.
- W2255548690 created "2016-06-24" @default.
- W2255548690 creator A5043540428 @default.
- W2255548690 creator A5052175239 @default.
- W2255548690 creator A5060625163 @default.
- W2255548690 creator A5071249788 @default.
- W2255548690 date "2017-02-01" @default.
- W2255548690 modified "2023-10-16" @default.
- W2255548690 title "Feature Selection with Annealing for Computer Vision and Big Data Learning" @default.
- W2255548690 cites W1554289397 @default.
- W2255548690 cites W1578080815 @default.
- W2255548690 cites W1965125844 @default.
- W2255548690 cites W1968480053 @default.
- W2255548690 cites W1968694834 @default.
- W2255548690 cites W1970502168 @default.
- W2255548690 cites W1976948919 @default.
- W2255548690 cites W1996134027 @default.
- W2255548690 cites W2003217181 @default.
- W2255548690 cites W2005836623 @default.
- W2255548690 cites W2012885984 @default.
- W2255548690 cites W2020082788 @default.
- W2255548690 cites W2021315680 @default.
- W2255548690 cites W2024046085 @default.
- W2255548690 cites W2033932347 @default.
- W2255548690 cites W2052311585 @default.
- W2255548690 cites W2058381303 @default.
- W2255548690 cites W2063978378 @default.
- W2255548690 cites W2074682976 @default.
- W2255548690 cites W2091825929 @default.
- W2255548690 cites W2091877371 @default.
- W2255548690 cites W2093994886 @default.
- W2255548690 cites W2097323375 @default.
- W2255548690 cites W2111943383 @default.
- W2255548690 cites W2121990650 @default.
- W2255548690 cites W2131148434 @default.
- W2255548690 cites W2140274257 @default.
- W2255548690 cites W2143331230 @default.
- W2255548690 cites W2143426320 @default.
- W2255548690 cites W2147898188 @default.
- W2255548690 cites W2154053567 @default.
- W2255548690 cites W2154104389 @default.
- W2255548690 cites W2157285372 @default.
- W2255548690 cites W2159384462 @default.
- W2255548690 cites W2161969291 @default.
- W2255548690 cites W2168356304 @default.
- W2255548690 cites W2172195373 @default.
- W2255548690 cites W2546325542 @default.
- W2255548690 cites W2593996946 @default.
- W2255548690 cites W2963923078 @default.
- W2255548690 cites W3004732066 @default.
- W2255548690 cites W3101040439 @default.
- W2255548690 cites W3106108064 @default.
- W2255548690 cites W4205699531 @default.
- W2255548690 doi "https://doi.org/10.1109/tpami.2016.2544315" @default.
- W2255548690 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/28113263" @default.
- W2255548690 hasPublicationYear "2017" @default.
- W2255548690 type Work @default.
- W2255548690 sameAs 2255548690 @default.
- W2255548690 citedByCount "94" @default.
- W2255548690 countsByYear W22555486902016 @default.
- W2255548690 countsByYear W22555486902017 @default.
- W2255548690 countsByYear W22555486902018 @default.
- W2255548690 countsByYear W22555486902019 @default.
- W2255548690 countsByYear W22555486902020 @default.
- W2255548690 countsByYear W22555486902021 @default.
- W2255548690 countsByYear W22555486902022 @default.
- W2255548690 countsByYear W22555486902023 @default.
- W2255548690 crossrefType "journal-article" @default.
- W2255548690 hasAuthorship W2255548690A5043540428 @default.
- W2255548690 hasAuthorship W2255548690A5052175239 @default.
- W2255548690 hasAuthorship W2255548690A5060625163 @default.
- W2255548690 hasAuthorship W2255548690A5071249788 @default.
- W2255548690 hasBestOaLocation W22555486901 @default.
- W2255548690 hasConcept C119857082 @default.
- W2255548690 hasConcept C126255220 @default.
- W2255548690 hasConcept C148483581 @default.
- W2255548690 hasConcept C154945302 @default.
- W2255548690 hasConcept C189430467 @default.
- W2255548690 hasConcept C22019652 @default.
- W2255548690 hasConcept C33923547 @default.
- W2255548690 hasConcept C41008148 @default.
- W2255548690 hasConcept C48044578 @default.
- W2255548690 hasConcept C50644808 @default.
- W2255548690 hasConcept C77088390 @default.
- W2255548690 hasConceptScore W2255548690C119857082 @default.
- W2255548690 hasConceptScore W2255548690C126255220 @default.
- W2255548690 hasConceptScore W2255548690C148483581 @default.
- W2255548690 hasConceptScore W2255548690C154945302 @default.
- W2255548690 hasConceptScore W2255548690C189430467 @default.
- W2255548690 hasConceptScore W2255548690C22019652 @default.
- W2255548690 hasConceptScore W2255548690C33923547 @default.
- W2255548690 hasConceptScore W2255548690C41008148 @default.
- W2255548690 hasConceptScore W2255548690C48044578 @default.
- W2255548690 hasConceptScore W2255548690C50644808 @default.
- W2255548690 hasConceptScore W2255548690C77088390 @default.
- W2255548690 hasFunder F4320306076 @default.
- W2255548690 hasFunder F4320332180 @default.
- W2255548690 hasIssue "2" @default.