Matches in SemOpenAlex for { <https://semopenalex.org/work/W2255953404> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2255953404 abstract "This article is a part of a project investigating the relationship between the dynamics of completely integrable or to completely integrable billiard tables, the integral geometry on them, and the spectrum of the corresponding Laplace-Beltrami operators. It is concerned with new isospectral invariants and with the spectral rigidity problem for the Laplace-Beltrami operators ∆ t , t ∈ [0, 1], with Dirichlet, Neumann or Robin boundary conditions , associated with C 1 families of billiard tables (X, g t). We introduce a notion of weak isospectrality for such deformations. The main dynamical assumption on (X, g 0) is that the corresponding billiard ball map B 0 or an iterate P 0 = B m 0 of it posses a Kronecker invariant torus with a Diophantine frequency ω 0 and that the corresponding Birkhoff Normal Form is nondegenerate in Kolmogorov sense. Then we prove that there exists δ 0 > 0 and a set Ξ of Diophantine frequencies containing ω 0 and of full Lebesgue measure around ω 0 such that for each ω ∈ Ξ and 0 < δ < δ 0 there exists a C 1 family of Kronecker tori Λ t (ω) of P t for t ∈ [0, δ]. If the family ∆ t , t ∈ [0, 1], satisfies the weak isospectral condition we prove that the average action β t (ω) on Λ t (ω) and the Birkhoff Normal Form of P t at Λ t (ω) are independent of t ∈ [0, δ] for each ω ∈ Ξ. As an application we obtain infinitesimal spectral rigidity for Liouville billiard tables in dimensions 2 and 3. In particular infinitesimal spectral rigidity for the ellipse and the ellipsoid is obtained under the weak isospectral condition. Applications are obtained also for strictly convex billiard tables in R 2 as well as in the case when (X, g 0) admits an elliptic periodic billiard trajectory with no resonances of order ≤ 4. In particular we obtain spectral rigidity (under the weak isospectral condition) of elliptical billiard tables in the class of analytic and Z 2 × Z 2 symmetric billiard tables in R 2. We prove also that billiard tables with boundaries close to ellipses are spectrally rigid in this class. The results are based on a construction of C 1 families of quasi-modes associated with the Kronecker tori Λ t (ω) and on suitable KAM theorems for C 1 families of Hamiltonians. We propose a new iteration schema (a modified iterative lemma) in the proof of the KAM theorem with parameters, which avoids the Whitney extension theorem for C ∞ jets and allows one to obtain global estimates of the corresponding canonical transformations and Hamiltonians in the scale of all Holder norms. The classical and quantum Birkhoff Normal Forms for C 1 or analytic families of symplectic mappings (Hamiltonians) obtained here can be used as well in order to investigate problems related to the quantum non-ergodicity of C ∞-smooth KAM systems." @default.
- W2255953404 created "2016-06-24" @default.
- W2255953404 creator A5028702586 @default.
- W2255953404 creator A5054295237 @default.
- W2255953404 date "2019-02-09" @default.
- W2255953404 modified "2023-10-10" @default.
- W2255953404 title "From KAM Tori to Isospectral Invariants and Spectral Rigidity of Billiard Tables" @default.
- W2255953404 cites W116259974 @default.
- W2255953404 cites W1488877410 @default.
- W2255953404 cites W1489107363 @default.
- W2255953404 cites W1491682511 @default.
- W2255953404 cites W1524225112 @default.
- W2255953404 cites W1532154335 @default.
- W2255953404 cites W1570781945 @default.
- W2255953404 cites W1596782198 @default.
- W2255953404 cites W1664825798 @default.
- W2255953404 cites W1868276709 @default.
- W2255953404 cites W1967101989 @default.
- W2255953404 cites W1967807518 @default.
- W2255953404 cites W1968757834 @default.
- W2255953404 cites W1996867951 @default.
- W2255953404 cites W2002662856 @default.
- W2255953404 cites W2006094273 @default.
- W2255953404 cites W2016564014 @default.
- W2255953404 cites W2016716371 @default.
- W2255953404 cites W2017867787 @default.
- W2255953404 cites W2029770333 @default.
- W2255953404 cites W2036094049 @default.
- W2255953404 cites W2042704729 @default.
- W2255953404 cites W2045791131 @default.
- W2255953404 cites W2048152620 @default.
- W2255953404 cites W2062299193 @default.
- W2255953404 cites W2063897313 @default.
- W2255953404 cites W2074133189 @default.
- W2255953404 cites W2074922791 @default.
- W2255953404 cites W2083769754 @default.
- W2255953404 cites W2085320715 @default.
- W2255953404 cites W2086715856 @default.
- W2255953404 cites W2088926376 @default.
- W2255953404 cites W2114632960 @default.
- W2255953404 cites W2141610717 @default.
- W2255953404 cites W2153116687 @default.
- W2255953404 cites W2157452742 @default.
- W2255953404 cites W2158048440 @default.
- W2255953404 cites W2317203360 @default.
- W2255953404 cites W2332185060 @default.
- W2255953404 cites W2477703526 @default.
- W2255953404 cites W2963589863 @default.
- W2255953404 cites W49344303 @default.
- W2255953404 cites W624119579 @default.
- W2255953404 cites W640325155 @default.
- W2255953404 cites W651197039 @default.
- W2255953404 hasPublicationYear "2019" @default.
- W2255953404 type Work @default.
- W2255953404 sameAs 2255953404 @default.
- W2255953404 citedByCount "1" @default.
- W2255953404 countsByYear W22559534042020 @default.
- W2255953404 crossrefType "posted-content" @default.
- W2255953404 hasAuthorship W2255953404A5028702586 @default.
- W2255953404 hasAuthorship W2255953404A5054295237 @default.
- W2255953404 hasBestOaLocation W22559534041 @default.
- W2255953404 hasConcept C121332964 @default.
- W2255953404 hasConcept C160343418 @default.
- W2255953404 hasConcept C193605512 @default.
- W2255953404 hasConcept C202444582 @default.
- W2255953404 hasConcept C2524010 @default.
- W2255953404 hasConcept C2779710842 @default.
- W2255953404 hasConcept C33923547 @default.
- W2255953404 hasConcept C62520636 @default.
- W2255953404 hasConcept C8522634 @default.
- W2255953404 hasConcept C9767117 @default.
- W2255953404 hasConceptScore W2255953404C121332964 @default.
- W2255953404 hasConceptScore W2255953404C160343418 @default.
- W2255953404 hasConceptScore W2255953404C193605512 @default.
- W2255953404 hasConceptScore W2255953404C202444582 @default.
- W2255953404 hasConceptScore W2255953404C2524010 @default.
- W2255953404 hasConceptScore W2255953404C2779710842 @default.
- W2255953404 hasConceptScore W2255953404C33923547 @default.
- W2255953404 hasConceptScore W2255953404C62520636 @default.
- W2255953404 hasConceptScore W2255953404C8522634 @default.
- W2255953404 hasConceptScore W2255953404C9767117 @default.
- W2255953404 hasLocation W22559534041 @default.
- W2255953404 hasLocation W22559534042 @default.
- W2255953404 hasLocation W22559534043 @default.
- W2255953404 hasOpenAccess W2255953404 @default.
- W2255953404 hasPrimaryLocation W22559534041 @default.
- W2255953404 hasRelatedWork W1527292232 @default.
- W2255953404 hasRelatedWork W1968411182 @default.
- W2255953404 hasRelatedWork W2009878331 @default.
- W2255953404 hasRelatedWork W2063071823 @default.
- W2255953404 hasRelatedWork W2921481273 @default.
- W2255953404 hasRelatedWork W2953363421 @default.
- W2255953404 hasRelatedWork W3122252734 @default.
- W2255953404 hasRelatedWork W4232338349 @default.
- W2255953404 hasRelatedWork W4300506240 @default.
- W2255953404 hasRelatedWork W4310007495 @default.
- W2255953404 isParatext "false" @default.
- W2255953404 isRetracted "false" @default.
- W2255953404 magId "2255953404" @default.
- W2255953404 workType "article" @default.