Matches in SemOpenAlex for { <https://semopenalex.org/work/W2256172976> ?p ?o ?g. }
Showing items 1 to 70 of
70
with 100 items per page.
- W2256172976 endingPage "92" @default.
- W2256172976 startingPage "83" @default.
- W2256172976 abstract "The hyperbolic equation (1D problem) supplemented by adequate boundary and initial conditions is considered. This equation is solved using the combined variant of the boundary element method. The problem is also solved in analytical way. The comparison of the results obtained by means of these two methods confirms the effectiveness and accuracy of the BEM. 1. Formulation of the problem The following equation is considered 2 2 2 2 ) , ( ) , ( ) , ( x t x U t t x U t t x U ∂ ∂ = ∂ ∂ + ∂ ∂ (1) where U (x, t) is an unknown function, x is the spatial co-ordinate and t is the time. The equation (1) is supplemented by the boundary conditions 0 ) , 1 ( : 1 , 0 0 ) , 0 ( : 0 , 0 = = > = = > t U x t t U x t (2) and the initial ones 0 ) , ( : 0 , 1 0 0 ) 0 , ( : 0 , 1 0 0 0 = ∂ ∂ = = = < < = t t t x U t x U x U t x (3) This type of boundary and initial conditions allows to solve the problem analytically and in this way the results obtained by means of the boundary element method using discretization in time can be compared with the analytical solution. Please cite this article as: Maria Lupa, Ewa Ładyga, Application of the Boundary Element Method using discretization in time for numerical solution of hyperbolic equation, Scientific Research of the Institute of Mathematics and Computer Science, 2008, Volume 7, Issue 1, pages 83-92. The website: http://www.amcm.pcz.pl/ M. Lupa, E. Ładyga 84 2. Boundary element method To solve the equation (1), the BEM using discretization in time is applied [1, 2]. So, the time grid ∞ < < < < < < < = − − F f f f t t t t t t 1 2 1 0 0 (4) with constant step 1 − − = f f t t t ∆ is introduced. For the time interval [ ] f f t t , 2 − the following approximations of time derivative can be taken into account t t x U t x U t t x U f f t t f ∆ ) , ( ) , ( ) , ( 1 − = − = ∂ ∂ (5) and t t x U t x U t t x U f f t t f ∆ 2 ) , ( ) , ( ) , ( 2 − = − = ∂ ∂ (6) or t t x U t x U t x U t t x U f f f t t f ∆ 2 ) , ( ) , ( 4 ) , ( 3 ) , ( 2 1 − − = + − = ∂ ∂ (7) The second time derivative is approximated in following way 2 2 1 2 2 ) ( ) , ( ) , ( 2 ) , ( ) , ( t t x U t x U t x U t t x U t f f ∆ − − + − = ∂ ∂ (8) Let t ∆ β 1 = and ). , ( t f x U U f ∆ = At the f-th time step ) 2 ( ≥ = f t f t ∆ the equation (1) can be approximately rewritten as 0 2 1 2 2 = − + − ∂ ∂ − − f f f f U C U B U A x U (9) where for the first variant (equation (5)) 2 2 2 , 2 , β β β β β = + = + = C B A (10) for the second variant (equation (6)) β β β β β 2 1 , 2 , 2 1 2 2 2 − = = + = C B A (11) Application of the boundary element method using discretization in time for numerical solution ... 85 and for the third variant (equation (7)) β β β β β β 2 1 ), ( 2 , 2 3 2 2 2 + = + = + = C B A (12) For equation (9) the weighted residual criterion is applied [1] ∫ = − + − ∂ ∂ ∗ − − 1 0 2 1 2 2 0 ) , ( dx x U U C U B U A x U f f f f ξ (13) where ξ∈(0, 1) is the observation point, U * (ξ, x) is the fundamental solution and this function should fulfil the equation ) , ( ) , ( ) , ( * 2 2 x x U A x x U ξ δ ξ ξ − = − ∂ ∂ ∗ (14) where δ (ξ, x) is the Dirac function. It can be check that the following function ( ) ) ( exp 2 1 , * A x A x U ξ ξ − − = (15) fulfills the equation (14). Additionally, the function q (ξ, x) resulting from fundamental solution is defined x x U x q ∂ ∂ − = ) , ( ) , ( * * ξ ξ (16) and it can be calculated analytically ) ( exp 2 ) ( sgn ) , ( * A x x x q ξ ξ ξ − − − = (17) where sgn(⋅) is the sign function. Integrating twice by parts the first component of equation (13) and taking into account the property (14) of fundamental solution one obtains ∫ = − + + − ∂ ∂ − ∂ ∂" @default.
- W2256172976 created "2016-06-24" @default.
- W2256172976 creator A5010265241 @default.
- W2256172976 creator A5076720731 @default.
- W2256172976 date "2008-01-01" @default.
- W2256172976 modified "2023-09-23" @default.
- W2256172976 title "Application of the Boundary Element Method using discretization in time for numerical solution of hyperbolic equation" @default.
- W2256172976 cites W1599037331 @default.
- W2256172976 cites W969984632 @default.
- W2256172976 hasPublicationYear "2008" @default.
- W2256172976 type Work @default.
- W2256172976 sameAs 2256172976 @default.
- W2256172976 citedByCount "3" @default.
- W2256172976 countsByYear W22561729762020 @default.
- W2256172976 crossrefType "journal-article" @default.
- W2256172976 hasAuthorship W2256172976A5010265241 @default.
- W2256172976 hasAuthorship W2256172976A5076720731 @default.
- W2256172976 hasConcept C121332964 @default.
- W2256172976 hasConcept C134306372 @default.
- W2256172976 hasConcept C135628077 @default.
- W2256172976 hasConcept C182310444 @default.
- W2256172976 hasConcept C33923547 @default.
- W2256172976 hasConcept C48395688 @default.
- W2256172976 hasConcept C52890695 @default.
- W2256172976 hasConcept C62354387 @default.
- W2256172976 hasConcept C63632240 @default.
- W2256172976 hasConcept C73000952 @default.
- W2256172976 hasConcept C97355855 @default.
- W2256172976 hasConceptScore W2256172976C121332964 @default.
- W2256172976 hasConceptScore W2256172976C134306372 @default.
- W2256172976 hasConceptScore W2256172976C135628077 @default.
- W2256172976 hasConceptScore W2256172976C182310444 @default.
- W2256172976 hasConceptScore W2256172976C33923547 @default.
- W2256172976 hasConceptScore W2256172976C48395688 @default.
- W2256172976 hasConceptScore W2256172976C52890695 @default.
- W2256172976 hasConceptScore W2256172976C62354387 @default.
- W2256172976 hasConceptScore W2256172976C63632240 @default.
- W2256172976 hasConceptScore W2256172976C73000952 @default.
- W2256172976 hasConceptScore W2256172976C97355855 @default.
- W2256172976 hasIssue "1" @default.
- W2256172976 hasLocation W22561729761 @default.
- W2256172976 hasOpenAccess W2256172976 @default.
- W2256172976 hasPrimaryLocation W22561729761 @default.
- W2256172976 hasRelatedWork W1144628075 @default.
- W2256172976 hasRelatedWork W1484293461 @default.
- W2256172976 hasRelatedWork W1573206669 @default.
- W2256172976 hasRelatedWork W1598499693 @default.
- W2256172976 hasRelatedWork W1966288707 @default.
- W2256172976 hasRelatedWork W1972789047 @default.
- W2256172976 hasRelatedWork W1974694920 @default.
- W2256172976 hasRelatedWork W1985922179 @default.
- W2256172976 hasRelatedWork W2042403941 @default.
- W2256172976 hasRelatedWork W2050249199 @default.
- W2256172976 hasRelatedWork W2057385906 @default.
- W2256172976 hasRelatedWork W2068554182 @default.
- W2256172976 hasRelatedWork W2125984812 @default.
- W2256172976 hasRelatedWork W2161522429 @default.
- W2256172976 hasRelatedWork W2241526981 @default.
- W2256172976 hasRelatedWork W2262567614 @default.
- W2256172976 hasRelatedWork W2594088481 @default.
- W2256172976 hasRelatedWork W2991540334 @default.
- W2256172976 hasRelatedWork W3008013925 @default.
- W2256172976 hasRelatedWork W3151594047 @default.
- W2256172976 hasVolume "7" @default.
- W2256172976 isParatext "false" @default.
- W2256172976 isRetracted "false" @default.
- W2256172976 magId "2256172976" @default.
- W2256172976 workType "article" @default.