Matches in SemOpenAlex for { <https://semopenalex.org/work/W2256876306> ?p ?o ?g. }
- W2256876306 endingPage "328" @default.
- W2256876306 startingPage "316" @default.
- W2256876306 abstract "Different integrated biotechnological advances are gradually replacing petrol-based chemistry and contribute to the development of new chemicals and plastics. Some biobased polymers, such as PLA, are chemically synthesized and are already available on an industrial scale. A long-term contribution to the production of renewable building-blocks and monomers is expected from biotechnology research on the bioconversion of CO2 and microbial electrocatalysis. Advanced applications of polymers are obtainable by introducing chemical functionalities on the surface of the polymer while retaining its bulk properties. Such modifications can change the superficial hydrophobicity as well as introduce a ‘pendant’ as anchoring point or for successively chemical modifications. These possibilities are of key importance, especially for biomedical applications. Biocatalyzed polymerization is not yet economically competitive. The conventional process configurations and reactors used in chemical synthesis do not respond to the complexity of the biocatalytic systems. Thus, the need to improve mass transfer while preserving the integrity of the biocatalyst still requires a specific tailored solution. Robust enzyme immobilization, as well as thin film conditions or ionic liquids, are some of the solutions proposed for overcoming such limitations. The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications. The polymer industry is under pressure to mitigate the environmental cost of petrol-based plastics. Biotechnologies contribute to the gradual replacement of petrol-based chemistry and the development of new renewable products, leading to the closure of carbon circle. An array of bio-based building blocks is already available on an industrial scale and is boosting the development of new generations of sustainable and functionally competitive polymers, such as polylactic acid (PLA). Biocatalysts add higher value to bio-based polymers by catalyzing not only their selective modification, but also their synthesis under mild and controlled conditions. The ultimate aim is the introduction of chemical functionalities on the surface of the polymer while retaining its bulk properties, thus enlarging the spectrum of advanced applications. property of a material that enables it to be chemically dissolved by bacteria, fungi, or enzymes. the process that entails refining of biomass in a commercial context for the production of fuels, chemicals, polymers, materials, food, feed, and value-added ingredients. (E.C. 3.1.1.74) hydrolytic enzymes that catalyze the hydrolysis of the ester bonds of cutin, a natural polyester of the plant cuticle. enzymes are formulated to become insoluble and enabling recycling. The enzymatic proteins can be either anchored on solid matrixes, cross-linked, or entrapped in porous materials. (E.C. 3.1.1.3) hydrolytic enzymes that catalyze the hydrolysis of triglyceride ester bonds. an inactive compound that is metabolized (i.e., converted within the body) into a pharmacologically active drug. organic natural resource that can replenish to overcome usage and consumption, either through biological reproduction or other naturally recurring processes. a particular type of chemical reactor, usually considered the simplest type of reactor, where mixing is provided by a mechanical stirrer system, such as a turbine wing or a propeller." @default.
- W2256876306 created "2016-06-24" @default.
- W2256876306 creator A5040191841 @default.
- W2256876306 creator A5043499966 @default.
- W2256876306 creator A5051013236 @default.
- W2256876306 creator A5066518311 @default.
- W2256876306 creator A5067077015 @default.
- W2256876306 creator A5071790968 @default.
- W2256876306 date "2016-04-01" @default.
- W2256876306 modified "2023-10-03" @default.
- W2256876306 title "The Closure of the Cycle: Enzymatic Synthesis and Functionalization of Bio-Based Polyesters" @default.
- W2256876306 cites W1780352292 @default.
- W2256876306 cites W1788067121 @default.
- W2256876306 cites W1841946624 @default.
- W2256876306 cites W1855019089 @default.
- W2256876306 cites W1971415314 @default.
- W2256876306 cites W1972312627 @default.
- W2256876306 cites W1972499566 @default.
- W2256876306 cites W1976183189 @default.
- W2256876306 cites W1977287365 @default.
- W2256876306 cites W1978849221 @default.
- W2256876306 cites W1981525534 @default.
- W2256876306 cites W1984158048 @default.
- W2256876306 cites W1984504437 @default.
- W2256876306 cites W1987643155 @default.
- W2256876306 cites W1988694126 @default.
- W2256876306 cites W1991263269 @default.
- W2256876306 cites W1994726566 @default.
- W2256876306 cites W1996908363 @default.
- W2256876306 cites W2000384224 @default.
- W2256876306 cites W2002249530 @default.
- W2256876306 cites W2002488078 @default.
- W2256876306 cites W2002529545 @default.
- W2256876306 cites W2006978780 @default.
- W2256876306 cites W2007290227 @default.
- W2256876306 cites W2009208992 @default.
- W2256876306 cites W2010789014 @default.
- W2256876306 cites W2012033163 @default.
- W2256876306 cites W2018719719 @default.
- W2256876306 cites W2019532760 @default.
- W2256876306 cites W2019724041 @default.
- W2256876306 cites W2023249489 @default.
- W2256876306 cites W2032326955 @default.
- W2256876306 cites W2032498737 @default.
- W2256876306 cites W2032801709 @default.
- W2256876306 cites W2038009999 @default.
- W2256876306 cites W2056868383 @default.
- W2256876306 cites W2057900648 @default.
- W2256876306 cites W2061006116 @default.
- W2256876306 cites W2062181040 @default.
- W2256876306 cites W2068739980 @default.
- W2256876306 cites W2068782054 @default.
- W2256876306 cites W2069694224 @default.
- W2256876306 cites W2073495854 @default.
- W2256876306 cites W2079146122 @default.
- W2256876306 cites W2081230761 @default.
- W2256876306 cites W2084105049 @default.
- W2256876306 cites W2084694171 @default.
- W2256876306 cites W2085336466 @default.
- W2256876306 cites W2088541803 @default.
- W2256876306 cites W2090111896 @default.
- W2256876306 cites W2091884264 @default.
- W2256876306 cites W2092680707 @default.
- W2256876306 cites W2095035423 @default.
- W2256876306 cites W2097661300 @default.
- W2256876306 cites W2103344243 @default.
- W2256876306 cites W2107624359 @default.
- W2256876306 cites W2109166057 @default.
- W2256876306 cites W2114779066 @default.
- W2256876306 cites W2133008848 @default.
- W2256876306 cites W2138722345 @default.
- W2256876306 cites W2141144571 @default.
- W2256876306 cites W2148304268 @default.
- W2256876306 cites W2154297341 @default.
- W2256876306 cites W2155891373 @default.
- W2256876306 cites W2163739196 @default.
- W2256876306 cites W2166779933 @default.
- W2256876306 cites W2168260741 @default.
- W2256876306 cites W2196651179 @default.
- W2256876306 cites W2319857115 @default.
- W2256876306 cites W2332883898 @default.
- W2256876306 cites W4211185960 @default.
- W2256876306 doi "https://doi.org/10.1016/j.tibtech.2015.12.009" @default.
- W2256876306 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26806112" @default.
- W2256876306 hasPublicationYear "2016" @default.
- W2256876306 type Work @default.
- W2256876306 sameAs 2256876306 @default.
- W2256876306 citedByCount "103" @default.
- W2256876306 countsByYear W22568763062016 @default.
- W2256876306 countsByYear W22568763062017 @default.
- W2256876306 countsByYear W22568763062018 @default.
- W2256876306 countsByYear W22568763062019 @default.
- W2256876306 countsByYear W22568763062020 @default.
- W2256876306 countsByYear W22568763062021 @default.
- W2256876306 countsByYear W22568763062022 @default.
- W2256876306 countsByYear W22568763062023 @default.
- W2256876306 crossrefType "journal-article" @default.
- W2256876306 hasAuthorship W2256876306A5040191841 @default.