Matches in SemOpenAlex for { <https://semopenalex.org/work/W2257662942> ?p ?o ?g. }
- W2257662942 endingPage "1739" @default.
- W2257662942 startingPage "1728" @default.
- W2257662942 abstract "Human Ataxin-2 (ATXN2) gene locus variants have been associated with obesity, diabetes mellitus type 1,and hypertension in genome-wide association studies, whereas mouse studies showed the knock-out of Atxn2 to lead to obesity, insulin resistance, and dyslipidemia. Intriguingly, the deficiency of ATXN2 protein orthologs in yeast and flies rescues the neurodegeneration process triggered by TDP-43 and Ataxin-1 toxicity. To understand the molecular effects of ATXN2 deficiency by unbiased approaches, we quantified the global proteome and metabolome of Atxn2-knock-out mice with label-free mass spectrometry. In liver tissue, significant downregulations of the proteins ACADS, ALDH6A1, ALDH7A1, IVD, MCCC2, PCCA, OTC, together with bioinformatic enrichment of downregulated pathways for branched chain and other amino acid metabolism, fatty acids, and citric acid cycle were observed. Statistical trends in the cerebellar proteome and in the metabolomic profiles supported these findings. They are in good agreement with recent claims that PBP1, the yeast ortholog of ATXN2, sequestrates the nutrient sensor TORC1 in periods of cell stress. Overall, ATXN2 appears to modulate nutrition and metabolism, and its activity changes are determinants of growth excess or cell atrophy. Human Ataxin-2 (ATXN2) gene locus variants have been associated with obesity, diabetes mellitus type 1,and hypertension in genome-wide association studies, whereas mouse studies showed the knock-out of Atxn2 to lead to obesity, insulin resistance, and dyslipidemia. Intriguingly, the deficiency of ATXN2 protein orthologs in yeast and flies rescues the neurodegeneration process triggered by TDP-43 and Ataxin-1 toxicity. To understand the molecular effects of ATXN2 deficiency by unbiased approaches, we quantified the global proteome and metabolome of Atxn2-knock-out mice with label-free mass spectrometry. In liver tissue, significant downregulations of the proteins ACADS, ALDH6A1, ALDH7A1, IVD, MCCC2, PCCA, OTC, together with bioinformatic enrichment of downregulated pathways for branched chain and other amino acid metabolism, fatty acids, and citric acid cycle were observed. Statistical trends in the cerebellar proteome and in the metabolomic profiles supported these findings. They are in good agreement with recent claims that PBP1, the yeast ortholog of ATXN2, sequestrates the nutrient sensor TORC1 in periods of cell stress. Overall, ATXN2 appears to modulate nutrition and metabolism, and its activity changes are determinants of growth excess or cell atrophy. Ataxin-2 (ATXN2) 1The abbreviations used are:Atxn2Ataxin-2FAFormic acidFDRFalse discovery rateGSEAGene Set Enrichment AnalysisHILICHydrophilic interaction chromatographyKOKnock outLFQLabel free quantificationMeOHMethanolMRMMultiple Reaction MonitoringMTBEMethyl-tert-butyl esterPEPPosterior error probabilityPPIProtein–protein interactionRPReversed phaseSTRINGSearch Tool for the Retrieval of Interacting Genes/Proteins. is a stress-regulated protein of 124 kDa size, which is expressed in specific neuron populations, but also in hepatocytes (1Scoles D.R. Pflieger L.T. Thai K.K. Hansen S.T. Dansithong W. Pulst S.M. ETS1 regulates the expression of ATXN2.Hum. Mol. Genet. 2012; 21: 5048-5065Crossref PubMed Scopus (22) Google Scholar, 2Huynh D.P. Del Bigio M.R. Ho D.H. Pulst S.M. Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer's disease and spinocerebellar ataxia 2.Ann. Neurol. 1999; 45: 232-241Crossref PubMed Scopus (150) Google Scholar, 3Nonhoff U. Ralser M. Welzel F. Piccini I. Balzereit D. Yaspo M.L. Lehrach H. Krobitsch S. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules.Mol. Biol. Cell. 2007; 18: 1385-1396Crossref PubMed Scopus (252) Google Scholar, 4Fittschen M. Lastres-Becker I. Halbach M.V. Damrath E. Gispert S. Azizov M. Walter M. Muller S. Auburger G. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate.Neurogenetics. 2015; 16: 181-192Crossref PubMed Scopus (48) Google Scholar). The structure of the human ATXN2 protein is characterized (1Scoles D.R. Pflieger L.T. Thai K.K. Hansen S.T. Dansithong W. Pulst S.M. ETS1 regulates the expression of ATXN2.Hum. Mol. Genet. 2012; 21: 5048-5065Crossref PubMed Scopus (22) Google Scholar) by the N-terminal polyQ domain (5Sahba S. Nechiporuk A. Figueroa K.P. Nechiporuk T. Pulst S.M. Genomic structure of the human gene for spinocerebellar ataxia type 2 (SCA2) on chromosome 12q24.1.Genomics. 1998; 47: 359-364Crossref PubMed Scopus (37) Google Scholar), (2Huynh D.P. Del Bigio M.R. Ho D.H. Pulst S.M. Expression of ataxin-2 in brains from normal individuals and patients with Alzheimer's disease and spinocerebellar ataxia 2.Ann. Neurol. 1999; 45: 232-241Crossref PubMed Scopus (150) Google Scholar) by dispersed proline-rich-domains that mediate association with various SH3-motif containing proteins of the tyrosine kinase receptor endocytosis machinery and thus modulate neuro-trophic signaling (6Nonis D. Schmidt M.H. van de Loo S. Eich F. Dikic I. Nowock J. Auburger G. Ataxin-2 associates with the endocytosis complex and affects EGF receptor trafficking.Cell Signal. 2008; 20: 1725-1739Crossref PubMed Scopus (78) Google Scholar, 7Drost J. Nonis D. Eich F. Leske O. Damrath E. Brunt E.R. Lastres-Becker I. Heumann R. Nowock J. Auburger G. Ataxin-2 modulates the levels of Grb2 and SRC but not ras signaling.J. Mol. Neurosci. 2013; 51: 68-81Crossref PubMed Scopus (39) Google Scholar), (3Nonhoff U. Ralser M. Welzel F. Piccini I. Balzereit D. Yaspo M.L. Lehrach H. Krobitsch S. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules.Mol. Biol. Cell. 2007; 18: 1385-1396Crossref PubMed Scopus (252) Google Scholar) by a C-terminal PAM2 motif that mediates interaction with the poly(A)-binding protein PABPC1 that is crucial for mRNA translation (8Damrath E. Heck M.V. Gispert S. Azizov M. Nowock J. Seifried C. Rub U. Walter M. Auburger G. ATXN2-CAG42 sequesters PABPC1 into insolubility and induces FBXW8 in cerebellum of old ataxic knock-in mice.PLoS Genet. 2012; 8: e1002920Crossref PubMed Scopus (56) Google Scholar) and (4Fittschen M. Lastres-Becker I. Halbach M.V. Damrath E. Gispert S. Azizov M. Walter M. Muller S. Auburger G. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate.Neurogenetics. 2015; 16: 181-192Crossref PubMed Scopus (48) Google Scholar) by Lsm and Lsm-AD sequences that mediate the association with RNAs (9Satterfield T.F. Pallanck L.J. Ataxin-2 and its Drosophila homolog, ATX2, physically assemble with polyribosomes.Hum. Mol. Genet. 2006; 15: 2523-2532Crossref PubMed Scopus (144) Google Scholar, 10Yokoshi M. Li Q. Yamamoto M. Okada H. Suzuki Y. Kawahara Y. Direct binding of Ataxin-2 to distinct elements in 3′ UTRs promotes mRNA stability and protein expression.Mol. Cell. 2014; 55: 186-198Abstract Full Text Full Text PDF PubMed Scopus (87) Google Scholar, 11Castello A. Fischer B. Eichelbaum K. Horos R. Beckmann B.M. Strein C. Davey N.E. Humphreys D.T. Preiss T. Steinmetz L.M. Krijgsveld J. Hentze M.W. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins.Cell. 2012; 149: 1393-1406Abstract Full Text Full Text PDF PubMed Scopus (1353) Google Scholar). ATXN2 is normally localized at the rough endoplasmic reticulum (12van de Loo S. Eich F. Nonis D. Auburger G. Nowock J. Ataxin-2 associates with rough endoplasmic reticulum.Exp. Neurol. 2009; 215: 110-118Crossref PubMed Scopus (63) Google Scholar), but it relocalizes during periods of low cell energy together with PABPC1 to stress granules where the quality control of RNA occurs (3Nonhoff U. Ralser M. Welzel F. Piccini I. Balzereit D. Yaspo M.L. Lehrach H. Krobitsch S. Ataxin-2 interacts with the DEAD/H-box RNA helicase DDX6 and interferes with P-bodies and stress granules.Mol. Biol. Cell. 2007; 18: 1385-1396Crossref PubMed Scopus (252) Google Scholar) and where fasting responses are modulated (13Heck M.V. Azizov M. Stehning T. Walter M. Kedersha N. Auburger G. Dysregulated expression of lipid storage and membrane dynamics factors in Tia1 knockout mouse nervous tissue.Neurogenetics. 2014; 15: 135-144Crossref PubMed Scopus (41) Google Scholar). The suppression of Ataxin-2 in mice and flies modulates mRNA translation and circadian clock (4Fittschen M. Lastres-Becker I. Halbach M.V. Damrath E. Gispert S. Azizov M. Walter M. Muller S. Auburger G. Genetic ablation of ataxin-2 increases several global translation factors in their transcript abundance but decreases translation rate.Neurogenetics. 2015; 16: 181-192Crossref PubMed Scopus (48) Google Scholar, 14Sudhakaran I.P. Hillebrand J. Dervan A. Das S. Holohan E.E. Hulsmeier J. Sarov M. Parker R. VijayRaghavan K. Ramaswami M. FMRP and Ataxin-2 function together in long-term olfactory habituation and neuronal translational control.Proc. Natl. Acad. Sci. U.S.A. 2014; 111: E99-E108Crossref PubMed Scopus (79) Google Scholar, 15Zhang Y. Ling J. Yuan C. Dubruille R. Emery P. A role for Drosophila ATX2 in activation of PER translation and circadian behavior.Science. 2013; 340: 879-882Crossref PubMed Scopus (97) Google Scholar, 16Lim C. Allada R. ATAXIN-2 activates PERIOD translation to sustain circadian rhythms in Drosophila.Science. 2013; 340: 875-879Crossref PubMed Scopus (100) Google Scholar). Ataxin-2 Formic acid False discovery rate Gene Set Enrichment Analysis Hydrophilic interaction chromatography Knock out Label free quantification Methanol Multiple Reaction Monitoring Methyl-tert-butyl ester Posterior error probability Protein–protein interaction Reversed phase Search Tool for the Retrieval of Interacting Genes/Proteins. In human populations, several independent genome wide association studies (GWAS) have underlined the importance of variants at the genomic locus of ATXN2. They influence the risk for obesity, type 1 diabetes, hypertension, and cardiovascular infarction (17Wellcome-Trust-Case-Control-Consortium Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls.Nature. 2007; 447: 661-678Crossref PubMed Scopus (7776) Google Scholar, 18Todd J.A. Walker N.M. Cooper J.D. Smyth D.J. Downes K. Plagnol V. Bailey R. Nejentsev S. Field S.F. Payne F. Lowe C.E. Szeszko J.S. Hafler J.P. Zeitels L. Yang J.H. Vella A. Nutland S. Stevens H.E. Schuilenburg H. Coleman G. Maisuria M. Meadows W. Smink L.J. Healy B. Burren O.S. Lam A.A. Ovington N.R. Allen J. Adlem E. Leung H.T. Wallace C. Howson J.M. Guja C. Ionescu-Tirgoviste C. Simmonds M.J. Heward J.M. Gough S.C. Dunger D.B. Wicker L.S. Clayton D.G. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes.Nat. Genet. 2007; 39: 857-864Crossref PubMed Scopus (1186) Google Scholar, 19Smyth D.J. Plagnol V. Walker N.M. Cooper J.D. Downes K. Yang J.H. Howson J.M. Stevens H. McManus R. Wijmenga C. Heap G.A. Dubois P.C. Clayton D.G. Hunt K.A. van Heel D.A. Todd J.A. Shared and distinct genetic variants in type 1 diabetes and celiac disease.N. Engl. J. Med. 2008; 359: 2767-2777Crossref PubMed Scopus (563) Google Scholar, 20Barrett J.C. Clayton D.G. Concannon P. Akolkar B. Cooper J.D. Erlich H.A. Julier C. Morahan G. Nerup J. Nierras C. Plagnol V. Pociot F. Schuilenburg H. Smyth D.J. Stevens H. Todd J.A. Walker N.M. Rich S.S. Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes.Nat. Genet. 2009; 41: 703-707Crossref PubMed Scopus (1310) Google Scholar, 21Figueroa K.P. Farooqi S. Harrup K. Frank J. O'Rahilly S. Pulst S.M. Genetic variance in the spinocerebellar ataxia type 2 (ATXN2) gene in children with severe early onset obesity.PLoS One. 2009; 4: e8280Crossref PubMed Scopus (22) Google Scholar, 22Ganesh S.K. Tragante V. Guo W. Guo Y. Lanktree M.B. Smith E.N. Johnson T. Castillo B.A. Barnard J. Baumert J. Chang Y.P. Elbers C.C. Farrall M. Fischer M.E. Franceschini N. Gaunt T.R. Gho J.M. Gieger C. Gong Y. Isaacs A. Kleber M.E. Mateo Leach I. McDonough C.W. Meijs M.F. Mellander O. Molony C.M. Nolte I.M. Padmanabhan S. Price T.S. Rajagopalan R. Shaffer J. Shah S. Shen H. Soranzo N. van der Most P.J. Van Iperen E.P. Van Setten J. Vonk J.M. Zhang L. Beitelshees A.L. Berenson G.S. Bhatt D.L. Boer J.M. Boerwinkle E. Burkley B. Burt A. Chakravarti A. Chen W. Cooper-Dehoff R.M. Curtis S.P. Dreisbach A. Duggan D. Ehret G.B. Fabsitz R.R. Fornage M. Fox E. Furlong C.E. Gansevoort R.T. Hofker M.H. Hovingh G.K. Kirkland S.A. Kottke-Marchant K. Kutlar A. Lacroix A.Z. Langaee T.Y. Li Y.R. Lin H. Liu K. Maiwald S. Malik R. Murugesan G. Newton-Cheh C. O'Connell J.R. Onland-Moret N.C. Ouwehand W.H. Palmas W. Penninx B.W. Pepine C.J. Pettinger M. Polak J.F. Ramachandran V.S. Ranchalis J. Redline S. Ridker P.M. Rose L.M. Scharnag H. Schork N.J. Shimbo D. Shuldiner A.R. Srinivasan S.R. Stolk R.P. Taylor H.A. Thorand B. Trip M.D. van Duijn C.M. Verschuren W.M. Wijmenga C. Winkelmann B.R. Wyatt S. Young J.H. Boehm B.O. Caulfield M.J. Chasman D.I. Davidson K.W. Doevendans P.A. Fitzgerald G.A. Gums J.G. Hakonarson H. Hillege H.L. Illig T. Jarvik G.P. Johnson J.A. Kastelein J.J. Koenig W. Marz W. Mitchell B.D. Murray S.S. Oldehinkel A.J. Rader D.J. Reilly M.P. Reiner A.P. Schadt E.E. Silverstein R.L. Snieder H. Stanton A.V. Uitterlinden A.G. van der Harst P. van der Schouw Y.T. Samani N.J. Johnson A.D. Munroe P.B. de Bakker P.I. Zhu X. Levy D. Keating B.J. Asselbergs F.W. Loci influencing blood pressure identified using a cardiovascular gene-centric array.Hum. Mol. Genet. 2013; 22: 1663-1678Crossref PubMed Scopus (102) Google Scholar, 23Gudbjartsson D.F. Bjornsdottir U.S. Halapi E. Helgadottir A. Sulem P. Jonsdottir G.M. Thorleifsson G. Helgadottir H. Steinthorsdottir V. Stefansson H. Williams C. Hui J. Beilby J. Warrington N.M. James A. Palmer L.J. Koppelman G.H. Heinzmann A. Krueger M. Boezen H.M. Wheatley A. Altmuller J. Shin H.D. Uh S.T. Cheong H.S. Jonsdottir B. Gislason D. Park C.S. Rasmussen L.M. Porsbjerg C. Hansen J.W. Backer V. Werge T. Janson C. Jonsson U.B. Ng M.C. Chan J. So W.Y. Ma R. Shah S.H. Granger C.B. Quyyumi A.A. Levey A.I. Vaccarino V. Reilly M.P. Rader D.J. Williams M.J. van Rij A.M. Jones G.T. Trabetti E. Malerba G. Pignatti P.F. Boner A. Pescollderungg L. Girelli D. Olivieri O. Martinelli N. Ludviksson B.R. Ludviksdottir D. Eyjolfsson G.I. Arnar D. Thorgeirsson G. Deichmann K. Thompson P.J. Wjst M. Hall I.P. Postma D.S. Gislason T. Gulcher J. Kong A. Jonsdottir I. Thorsteinsdottir U. Stefansson K. Sequence variants affecting eosinophil numbers associate with asthma and myocardial infarction.Nat. Genet. 2009; 41: 342-347Crossref PubMed Scopus (620) Google Scholar, 24Levy D. Ehret G.B. Rice K. Verwoert G.C. Launer L.J. Dehghan A. Glazer N.L. Morrison A.C. Johnson A.D. Aspelund T. Aulchenko Y. Lumley T. Kottgen A. Vasan R.S. Rivadeneira F. Eiriksdottir G. Guo X. Arking D.E. Mitchell G.F. Mattace-Raso F.U. Smith A.V. Taylor K. Scharpf R.B. Hwang S.J. Sijbrands E.J. Bis J. Harris T.B. Ganesh S.K. O'Donnell C.J. Hofman A. Rotter J.I. Coresh J. Benjamin E.J. Uitterlinden A.G. Heiss G. Fox C.S. Witteman J.C. Boerwinkle E. Wang T.J. Gudnason V. Larson M.G. Chakravarti A. Psaty B.M. van Duijn C.M. Genome-wide association study of blood pressure and hypertension.Nat. Genet. 2009; 41: 677-687Crossref PubMed Scopus (1084) Google Scholar, 25Newton-Cheh C. Johnson T. Gateva V. Tobin M.D. Bochud M. Coin L. Najjar S.S. Zhao J.H. Heath S.C. Eyheramendy S. Papadakis K. Voight B.F. Scott L.J. Zhang F. Farrall M. Tanaka T. Wallace C. Chambers J.C. Khaw K.T. Nilsson P. van der Harst P. Polidoro S. Grobbee D.E. Onland-Moret N.C. Bots M.L. Wain L.V. Elliott K.S. Teumer A. Luan J. Lucas G. Kuusisto J. Burton P.R. Hadley D. McArdle W.L. Brown M. Dominiczak A. Newhouse S.J. Samani N.J. Webster J. Zeggini E. Beckmann J.S. Bergmann S. Lim N. Song K. Vollenweider P. Waeber G. Waterworth D.M. Yuan X. Groop L. Orho-Melander M. Allione A. Di Gregorio A. Guarrera S. Panico S. Ricceri F. Romanazzi V. Sacerdote C. Vineis P. Barroso I. Sandhu M.S. Luben R.N. Crawford G.J. Jousilahti P. Perola M. Boehnke M. Bonnycastle L.L. Collins F.S. Jackson A.U. Mohlke K.L. Stringham H.M. Valle T.T. Willer C.J. Bergman R.N. Morken M.A. Doring A. Gieger C. Illig T. Meitinger T. Org E. Pfeufer A. Wichmann H.E. Kathiresan S. Marrugat J. O'Donnell C.J. Schwartz S.M. Siscovick D.S. Subirana I. Freimer N.B. Hartikainen A.L. McCarthy M.I. O'Reilly P.F. Peltonen L. Pouta A. de Jong P.E. Snieder H. van Gilst W.H. Clarke R. Goel A. Hamsten A. Peden J.F. Seedorf U. Syvanen A.C. Tognoni G. Lakatta E.G. Sanna S. Scheet P. Schlessinger D. Scuteri A. Dorr M. Ernst F. Felix S.B. Homuth G. Lorbeer R. Reffelmann T. Rettig R. Volker U. Galan P. Gut I.G. Hercberg S. Lathrop G.M. Zelenika D. Deloukas P. Soranzo N. Williams F.M. Zhai G. Salomaa V. Laakso M. Elosua R. Forouhi N.G. Volzke H. Uiterwaal C.S. van der Schouw Y.T. Numans M.E. Matullo G. Navis G. Berglund G. Bingham S.A. Kooner J.S. Connell J.M. Bandinelli S. Ferrucci L. Watkins H. Spector T.D. Tuomilehto J. Altshuler D. Strachan D.P. Laan M. Meneton P. Wareham N.J. Uda M. Jarvelin M.R. Mooser V. Melander O. Loos R.J. Elliott P. Abecasis G.R. Caulfield M. Munroe P.B. Genome-wide association study identifies eight loci associated with blood pressure.Nat. Genet. 2009; 41: 666-676Crossref PubMed Scopus (989) Google Scholar, 26Ehret G.B. Munroe P.B. Rice K.M. Bochud M. Johnson A.D. Chasman D.I. Smith A.V. Tobin M.D. Verwoert G.C. Hwang S.J. Pihur V. Vollenweider P. O'Reilly P.F. Amin N. Bragg-Gresham J.L. Teumer A. Glazer N.L. Launer L. Zhao J.H. Aulchenko Y. Heath S. Sober S. Parsa A. Luan J. Arora P. Dehghan A. Zhang F. Lucas G. Hicks A.A. Jackson A.U. Peden J.F. Tanaka T. Wild S.H. Rudan I. Igl W. Milaneschi Y. Parker A.N. Fava C. Chambers J.C. Fox E.R. Kumari M. Go M.J. van der Harst P. Kao W.H. Sjogren M. Vinay D.G. Alexander M. Tabara Y. Shaw-Hawkins S. Whincup P.H. Liu Y. Shi G. Kuusisto J. Tayo B. Seielstad M. Sim X. Nguyen K.D. Lehtimaki T. Matullo G. Wu Y. Gaunt T.R. Onland-Moret N.C. Cooper M.N. Platou C.G. Org E. Hardy R. Dahgam S. Palmen J. Vitart V. Braund P.S. Kuznetsova T. Uiterwaal C.S. Adeyemo A. Palmas W. Campbell H. Ludwig B. Tomaszewski M. Tzoulaki I. Palmer N.D. Aspelund T. Garcia M. Chang Y.P. O'Connell J.R. Steinle N.I. Grobbee D.E. Arking D.E. Kardia S.L. Morrison A.C. Hernandez D. Najjar S. McArdle W.L. Hadley D. Brown M.J. Connell J.M. Hingorani A.D. Day I.N. Lawlor D.A. Beilby J.P. Lawrence R.W. Clarke R. Hopewell J.C. Ongen H. Dreisbach A.W. Li Y. Young J.H. Bis J.C. Kahonen M. Viikari J. Adair L.S. Lee N.R. Chen M.H. Olden M. Pattaro C. Bolton J.A. Kottgen A. Bergmann S. Mooser V. Chaturvedi N. Frayling T.M. Islam M. Jafar T.H. Erdmann J. Kulkarni S.R. Bornstein S.R. Grassler J. Groop L. Voight B.F. Kettunen J. Howard P. Taylor A. Guarrera S. Ricceri F. Emilsson V. Plump A. Barroso I. Khaw K.T. Weder A.B. Hunt S.C. Sun Y.V. Bergman R.N. Collins F.S. Bonnycastle L.L. Scott L.J. Stringham H.M. Peltonen L. Perola M. Vartiainen E. Brand S.M. Staessen J.A. Wang T.J. Burton P.R. Soler Artigas M. Dong Y. Snieder H. Wang X. Zhu H. Lohman K.K. Rudock M.E. Heckbert S.R. Smith N.L. Wiggins K.L. Doumatey A. Shriner D. Veldre G. Viigimaa M. Kinra S. Prabhakaran D. Tripathy V. Langefeld C.D. Rosengren A. Thelle D.S. Corsi A.M. Singleton A. Forrester T. Hilton G. McKenzie C.A. Salako T. Iwai N. Kita Y. Ogihara T. Ohkubo T. Okamura T. Ueshima H. Umemura S. Eyheramendy S. Meitinger T. Wichmann H.E. Cho Y.S. Kim H.L. Lee J.Y. Scott J. Sehmi J.S. Zhang W. Hedblad B. Nilsson P. Smith G.D. Wong A. Narisu N. Stancakova A. Raffel L.J. Yao J. Kathiresan S. O'Donnell C.J. Schwartz S.M. Ikram M.A. Longstreth Jr., W.T. Mosley T.H. Seshadri S. Shrine N.R. Wain L.V. Morken M.A. Swift A.J. Laitinen J. Prokopenko I. Zitting P. Cooper J.A. Humphries S.E. Danesh J. Rasheed A. Goel A. Hamsten A. Watkins H. Bakker S.J. van Gilst W.H. Janipalli C.S. Mani K.R. Yajnik C.S. Hofman A. Mattace-Raso F.U. Oostra B.A. Demirkan A. Isaacs A. Rivadeneira F. Lakatta E.G. Orru M. Scuteri A. Ala-Korpela M. Kangas A.J. Lyytikainen L.P. Soininen P. Tukiainen T. Wurtz P. Ong R.T. Dorr M. Kroemer H.K. Volker U. Volzke H. Galan P. Hercberg S. Lathrop M. Zelenika D. Deloukas P. Mangino M. Spector T.D. Zhai G. Meschia J.F. Nalls M.A. Sharma P. Terzic J. Kumar M.V. Denniff M. Zukowska-Szczechowska E. Wagenknecht L.E. Fowkes F.G. Charchar F.J. Schwarz P.E. Hayward C. Guo X. Rotimi C. Bots M.L. Brand E. Samani N.J. Polasek O. Talmud P.J. Nyberg F. Kuh D. Laan M. Hveem K. Palmer L.J. van der Schouw Y.T. Casas J.P. Mohlke K.L. Vineis P. Raitakari O. Ganesh S.K. Wong T.Y. Tai E.S. Cooper R.S. Laakso M. Rao D.C. Harris T.B. Morris R.W. Dominiczak A.F. Kivimaki M. Marmot M.G. Miki T. Saleheen D. Chandak G.R. Coresh J. Navis G. Salomaa V. Han B.G. Zhu X. Kooner J.S. Melander O. Ridker P.M. Bandinelli S. Gyllensten U.B. Wright A.F. Wilson J.F. Ferrucci L. Farrall M. Tuomilehto J. Pramstaller P.P. Elosua R. Soranzo N. Sijbrands E.J. Altshuler D. Loos R.J. Shuldiner A.R. Gieger C. Meneton P. Uitterlinden A.G. Wareham N.J. Gudnason V. Rotter J.I. Rettig R. Uda M. Strachan D.P. Witteman J.C. Hartikainen A.L. Beckmann J.S. Boerwinkle E. Vasan R.S. Boehnke M. Larson M.G. Jarvelin M.R. Psaty B.M. Abecasis G.R. Chakravarti A. Elliott P. van Duijn C.M. Newton-Cheh C. Levy D. Caulfield M.J. Johnson T. Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk.Nature. 2011; 478: 103-109Crossref PubMed Scopus (1567) Google Scholar). Their impact is strong enough to stand out as genetic modifiers of human longevity (27Sebastiani P. Solovieff N. Puca A. Hartley S.W. Melista E. Andersen S. Dworkis D.A. Wilk J.B. Myers R.H. Steinberg M.H. Montano M. Baldwin C.T. Perls T.T. Genetic signatures of exceptional longevity in humans.Science. 2010; 2010PubMed Google Scholar, 28Sebastiani P. Solovieff N. Dewan A.T. Walsh K.M. Puca A. Hartley S.W. Melista E. Andersen S. Dworkis D.A. Wilk J.B. Myers R.H. Steinberg M.H. Montano M. Baldwin C.T. Hoh J. Perls T.T. Genetic signatures of exceptional longevity in humans.PLoS One. 2012; 7: e29848Crossref PubMed Scopus (283) Google Scholar). Whether additive effects of coregulated neighbor genes at this locus play a causal role, has been discussed in a recent review (29Auburger G. Gispert S. Lahut S. Omur O. Damrath E. Heck M. Basak N. 12q24 locus association with type 1 diabetes: SH2B3 or ATXN2?.World J. Diabetes. 2014; 5: 316-327Crossref PubMed Google Scholar). In mice, two independent Atxn2-knock-out (KO) lines confirmed phenotypes of obesity (30Lastres-Becker I. Brodesser S. Lutjohann D. Azizov M. Buchmann J. Hintermann E. Sandhoff K. Schurmann A. Nowock J. Auburger G. Insulin receptor and lipid metabolism pathology in ataxin-2 knock-out mice.Hum. Mol. Genet. 2008; 17: 1465-1481Crossref PubMed Scopus (95) Google Scholar, 31Kiehl T.R. Nechiporuk A. Figueroa K.P. Keating M.T. Huynh D.P. Pulst S.M. Generation and characterization of Sca2 (ataxin-2) knockout mice.Biochem. Biophys. Res. Commun. 2006; 339: 17-24Crossref PubMed Scopus (106) Google Scholar), with excessive liver fat and glycogen deposits, insulin resistance, and dyslipidemia also being noted by the age of 6 months. Thus, even in the absence of high-fat-diet and within the short lifespan of rodents, the monogenic deficiency of Ataxin-2 is sufficient to trigger important features of the human metabolic syndrome. Conversely, the overactivity of Ataxin-2 because of polyglutamine (polyQ) expansions encoded by unstable (CAG)-repeat expansions in the human ATXN2 gene results in cell atrophy of specific neuronal populations. The polyQ-expansion of ATXN2 leads to a process of protein insolubility and aggregate formation with insidious toxicity throughout the nervous system, depending on the expansion size and polygenic interactions, possibly also on CAA-interruptions within the CAG-repeat. Neurodegenerative processes known as Spinocerebellar Ataxia type 2 (SCA2), the motor neuron degeneration Amyotrophic Lateral Sclerosis (ALS13), Frontotemporal dementia, Supranuclear palsy, or Levodopa-responsive Parkinsonism can be triggered by this mechanism (32Gwinn-Hardy K. Chen J.Y. Liu H.C. Liu T.Y. Boss M. Seltzer W. Adam A. Singleton A. Koroshetz W. Waters C. Hardy J. Farrer M. Spinocerebellar ataxia type 2 with parkinsonism in ethnic Chinese.Neurology. 2000; 55: 800-805Crossref PubMed Scopus (171) Google Scholar, 33Ross O.A. Rutherford N.J. Baker M. Soto-Ortolaza A.I. Carrasquillo M.M. DeJesus-Hernandez M. Adamson J. Li M. Volkening K. Finger E. Seeley W.W. Hatanpaa K.J. Lomen-Hoerth C. Kertesz A. Bigio E.H. Lippa C. Woodruff B.K. Knopman D.S. White 3rd, C.L. Van Gerpen J.A. Meschia J.F. Mackenzie I.R. Boylan K. Boeve B.F. Miller B.L. Strong M.J. Uitti R.J. Younkin S.G. Graff-Radford N.R. Petersen R.C. Wszolek Z.K. Dickson D.W. Rademakers R. Ataxin-2 repeat-length variation and neurodegeneration.Hum. Mol. Genet. 2011; 20: 3207-3212Crossref PubMed Scopus (129) Google Scholar, 34Lattante S. Millecamps S. Stevanin G. Rivaud-Pechoux S. Moigneu C. Camuzat A. Da Barroca S. Mundwiller E. Couarch P. Salachas F. Hannequin D. Meininger V. Pasquier F. Seilhean D. Couratier P. Danel-Brunaud V. Bonnet A.M. Tranchant C. LeGuern E. Brice A. Le Ber I. Kabashi E. Contribution of ATXN2 intermediary polyQ expansions in a spectrum of neurodegenerative disorders.Neurology. 2014; 83: 990-995Crossref PubMed Scopus (60) Google Scholar, 35Elden A.C. Kim H.J. Hart M.P. Chen-Plotkin A.S. Johnson B.S. Fang X. Armakola M. Geser F. Greene R. Lu M.M. Padmanabhan A. Clay-Falcone D. McCluskey L. Elman L. Juhr D. Gruber P.J. Rub U. Auburger G. Trojanowski J.Q. Lee V.M. Van Deerlin V.M. Bonini N.M. Gitler A.D. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS.Nature. 2010; 466: 1069-1075Crossref PubMed Scopus (878) Google Scholar, 36Pulst S.M. Nechiporuk A. Nechiporuk T. Gispert S. Chen X.N. Lopes-Cendes I. Pearlman S. Starkman S. Orozco-Diaz G. Lunkes A. DeJong P. Rouleau G.A. Auburger G. Korenberg J.R. Figueroa C. Sahba S. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2.Nat. Genet. 1996; 14: 269-276Crossref PubMed Scopus (972) Google Scholar, 37Lahut S. Omur O. Uyan O. Agim Z.S. Ozoguz A. Parman Y. Deymeer F. Oflazer P. Koc F. Ozcelik H. Auburger G. Basak A.N. ATXN2 and its neighbouring gene SH2B3 are associated with increased ALS risk in the Turkish population.PLoS One. 2012; 7: e42956Crossref PubMed Scopus (36) Google Scholar, 38Gispert S. Kurz A. Waibel S. Bauer P. Liepelt I. Geisen C. Gitler A.D. Becker T. Weber M. Berg D. Andersen P.M. Kruger R. Riess O. Ludolph A.C. Auburger G. The modulation of Amyotrophic Lateral Sclerosis risk by ataxin-2 intermediate polyglutamine expansions is a specific effect.Neurobiol. Dis. 2012; 45: 356-361Crossref PubMed Scopus (60) Google Scholar, 39Lee T. Li Y.R. Ingre C. Weber M. Grehl T. Gredal O. de Carvalho M. Meyer T. Tysnes O.B. Auburger G. Gispert S. Bonini N.M. Andersen P.M. Gitler A.D. Ataxin-2 intermediate-length polyglutamine expansions in European ALS patients.Hum. Mol. Genet. 2011; 20: 1697-1700Crossref PubMed Scopus (106) Google Scholar). In Drosophila melanogaster flies, the Ataxin-2 ortholog dATX2 was shown to act as a generic modifier gene that affects multiple if not all neurodegenerative disorders (40Na D. Rouf M. O'Kane C.J. Rubinsztein D.C. Gsponer J. NeuroGeM, a knowledgebase of genetic modifiers in neurodegenerative diseases.BMC Med. Genomics. 2013; 6: 52Crossref PubMed Scopus (20) Google Scholar). The protein interactions between ATXN2 and several other disease proteins of neurodegenerative disorders (41Lim J. Hao T. Shaw C. Patel A.J. Szabo G. Rual J.F. Fisk C.J. Li N. Smolyar A. Hill D.E. Barabasi A.L. Vidal M. Zoghbi H.Y. A protein–protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration.Cell. 2006; 125: 801-814Abstract Full Text Full Text PDF PubMed Scopus (635) Google Scholar) and the similarity of atrophy patterns between these polyglutamine expansion diseases suggests a common molecular pathomechanism among these diverse neurodegenerative disorders (42Rub U. Schols L. Paulson H. Auburger G. Kermer P. Jen J.C. Seidel K. Korf H.W. Deller T. Clinical features, neurogenetics, and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7.Prog. Neurobiol. 2013; 104: 38-66Crossref PubMed Scopus (215) Google Scholar). Interestingly, the deficiency of ATXN2 orthologs was observed to play a beneficial role in these neurodegenerative processes, by alleviating or postponing them in microorganism and animal models (35Elden A.C. Kim H.J. Hart M.P. Chen-Plotkin A.S. Johnson B.S. Fang X. Armakola M. Geser F. Greene R. Lu M.M. Padmanabhan A. Clay-Falcone D. McCluskey L. Elman L. Juhr D. Gruber P.J. Rub U. Auburger G. Trojanowski J.Q. Lee V.M. Van Deerlin V.M. Bonini N.M. Gitler A.D. Ataxin-2 intermediate-length polyglutamine expansions are associated with increased risk for ALS.Nature. 2010; 466: 1069-1075Crossref PubMed Scopus (878) Google Scholar, 43Al-Ramahi I. Perez A.M. Lim J. Zhang M. Sorensen R. de Haro M. Branco J. Pulst S.M. Zoghbi H.Y. Botas J. dAtaxin-2 mediates expanded Ataxin-1-induced neurodegeneration in a Drosophila model of SCA1.PLoS Genet. 2007; 3: e234Crossref PubMed Scopus (75) Google Scholar). Thus, the elucidation of the molecular effects of ATXN2 deficiency and of the physiological roles of Ataxin-2 may help to design neuroprotective approaches that are novel. Hence, we chose to document the global proteomic and metabolomic profile of Atxn2-KO mice in crucial tissues affected by Ataxin-2 loss- and gain-of-function, the liver and the cerebellum, respectively. This effort m" @default.
- W2257662942 created "2016-06-24" @default.
- W2257662942 creator A5007419734 @default.
- W2257662942 creator A5012357836 @default.
- W2257662942 creator A5028510459 @default.
- W2257662942 creator A5038750438 @default.
- W2257662942 creator A5065099034 @default.
- W2257662942 date "2016-05-01" @default.
- W2257662942 modified "2023-10-15" @default.
- W2257662942 title "Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations" @default.
- W2257662942 cites W1569018103 @default.
- W2257662942 cites W1921797022 @default.
- W2257662942 cites W1971047357 @default.
- W2257662942 cites W1972399183 @default.
- W2257662942 cites W1974518087 @default.
- W2257662942 cites W1975711970 @default.
- W2257662942 cites W1977300363 @default.
- W2257662942 cites W1981006540 @default.
- W2257662942 cites W1987437287 @default.
- W2257662942 cites W1989684700 @default.
- W2257662942 cites W1992271073 @default.
- W2257662942 cites W1992631886 @default.
- W2257662942 cites W1993418561 @default.
- W2257662942 cites W1996688162 @default.
- W2257662942 cites W1999377974 @default.
- W2257662942 cites W2000370819 @default.
- W2257662942 cites W2001629081 @default.
- W2257662942 cites W2001683794 @default.
- W2257662942 cites W2002364623 @default.
- W2257662942 cites W2004949307 @default.
- W2257662942 cites W2005170530 @default.
- W2257662942 cites W2006517651 @default.
- W2257662942 cites W2008526580 @default.
- W2257662942 cites W2011035933 @default.
- W2257662942 cites W2014077667 @default.
- W2257662942 cites W2016332933 @default.
- W2257662942 cites W2022984399 @default.
- W2257662942 cites W2024108088 @default.
- W2257662942 cites W2029835834 @default.
- W2257662942 cites W2037175112 @default.
- W2257662942 cites W2041440237 @default.
- W2257662942 cites W2041891067 @default.
- W2257662942 cites W2049980602 @default.
- W2257662942 cites W2053900484 @default.
- W2257662942 cites W2054133818 @default.
- W2257662942 cites W2055683337 @default.
- W2257662942 cites W2059474870 @default.
- W2257662942 cites W2061446718 @default.
- W2257662942 cites W2067399549 @default.
- W2257662942 cites W2070757426 @default.
- W2257662942 cites W2072267291 @default.
- W2257662942 cites W2078805519 @default.
- W2257662942 cites W2082906075 @default.
- W2257662942 cites W2084599072 @default.
- W2257662942 cites W2086825927 @default.
- W2257662942 cites W2087362898 @default.
- W2257662942 cites W2088993157 @default.
- W2257662942 cites W2089632640 @default.
- W2257662942 cites W2101605059 @default.
- W2257662942 cites W2102984318 @default.
- W2257662942 cites W2105924489 @default.
- W2257662942 cites W2107658207 @default.
- W2257662942 cites W2115527168 @default.
- W2257662942 cites W2118522375 @default.
- W2257662942 cites W2119506231 @default.
- W2257662942 cites W2120660072 @default.
- W2257662942 cites W2120896997 @default.
- W2257662942 cites W2122480092 @default.
- W2257662942 cites W2123001847 @default.
- W2257662942 cites W2128341112 @default.
- W2257662942 cites W2129254992 @default.
- W2257662942 cites W2130410032 @default.
- W2257662942 cites W2134783591 @default.
- W2257662942 cites W2138092997 @default.
- W2257662942 cites W2138543778 @default.
- W2257662942 cites W2149202384 @default.
- W2257662942 cites W2151610183 @default.
- W2257662942 cites W2157918066 @default.
- W2257662942 cites W2158206794 @default.
- W2257662942 cites W2159284401 @default.
- W2257662942 cites W2162922234 @default.
- W2257662942 cites W2169158245 @default.
- W2257662942 cites W2170776626 @default.
- W2257662942 cites W2195297884 @default.
- W2257662942 cites W25499092 @default.
- W2257662942 doi "https://doi.org/10.1074/mcp.m115.056770" @default.
- W2257662942 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4858951" @default.
- W2257662942 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26850065" @default.
- W2257662942 hasPublicationYear "2016" @default.
- W2257662942 type Work @default.
- W2257662942 sameAs 2257662942 @default.
- W2257662942 citedByCount "62" @default.
- W2257662942 countsByYear W22576629422016 @default.
- W2257662942 countsByYear W22576629422017 @default.
- W2257662942 countsByYear W22576629422018 @default.
- W2257662942 countsByYear W22576629422019 @default.
- W2257662942 countsByYear W22576629422020 @default.
- W2257662942 countsByYear W22576629422021 @default.