Matches in SemOpenAlex for { <https://semopenalex.org/work/W2258297590> ?p ?o ?g. }
- W2258297590 endingPage "7091" @default.
- W2258297590 startingPage "7081" @default.
- W2258297590 abstract "Nanosecond laser flash photolysis and photocurrent measurements have been used to investigate use of [(Ru(bpy)2(4,4′-(PO3H2)2bpy)]2+ attached to TiO2 nanoparticle films, TiO2−RuII, in a dye-sensitized photoelectrosynthesis cell (DSPEC) configuration for H2 production. In these experiments, laser flash excitation of TiO2−RuII and rapid injection lead to TiO2(e−)−RuIII with subsequent TiO2(e−)−RuIII → TiO2−RuII back electron transfer monitored on the nsec time scale with and without added triethanolamine (TEOA) and deprotonated ethylenediaminetetraacetic tetra-anion (EDTA4−) as irreversible electron transfer donors. With added TEOA or EDTA4−, a competition exists between back electron transfer and scavenger oxidation with the latter leading to H2 production in the photoelectrosynthesis cell. Reduction of TiO2(e−)−RuIII by both TEOA and EDTA4− occurs with kD ∼ 106 M−1 s−1. EDTA4− is a more efficient scavenger by a factor of ∼3 because of a more favorable partition equilibrium between the film and the external solution. Its increased scavenger efficiency appears in incident photon-to-current conversion efficiency (IPCE) measurements, in electron collection efficiencies (ηcoll), and in photocurrent measurements with H2 production. Evaluation of electron collection efficiencies by transient current measurements gave ηcoll ∼ 24% for TEOA and ∼ 70% for EDTA4−. The dynamics of back electron transfer are minimized, and collection efficiencies, photocurrents, and hydrogen production are maximized by application of a positive applied bias consistent with the results of I−V measurements. A pH dependent plateau is reached at ∼0 V at pH = 4.5 (EDTA4−) and at ∼ −0.4 V at pH 6.7 (TEOA). The difference is qualitatively consistent with the influence of pH on electron population in trap states below the conduction band and the role they play in back electron transfer. The excitation dependence of IPCE measurements matches the spectrum of TiO2−RuII with IPCE values ∼3 times higher for EDTA4− than for TEOA as noted above. Absorbed photon-to-current efficiency (APCE) values are light-intensity dependent because of the effect of multiple injection events and the influence of increasing trap site electron densities on back electron transfer. The key to efficient H2 production is minimizing back electron transfer. Application of a sufficiently positive potential relative to ECB for TiO2 accelerates loss of electrons from the film in competition with back electron transfer allowing for H2 production with efficiencies approaching 14.7% under steady-state irradiation." @default.
- W2258297590 created "2016-06-24" @default.
- W2258297590 creator A5010923945 @default.
- W2258297590 creator A5015256126 @default.
- W2258297590 creator A5023982747 @default.
- W2258297590 creator A5045295975 @default.
- W2258297590 creator A5055895408 @default.
- W2258297590 creator A5064308160 @default.
- W2258297590 creator A5080197399 @default.
- W2258297590 creator A5080599756 @default.
- W2258297590 creator A5089516413 @default.
- W2258297590 date "2011-03-16" @default.
- W2258297590 modified "2023-10-16" @default.
- W2258297590 title "Interfacial Electron Transfer Dynamics for [Ru(bpy)<sub>2</sub>((4,4′-PO<sub>3</sub>H<sub>2</sub>)<sub>2</sub>bpy)]<sup>2+</sup> Sensitized TiO<sub>2</sub> in a Dye-Sensitized Photoelectrosynthesis Cell: Factors Influencing Efficiency and Dynamics" @default.
- W2258297590 cites W1963537024 @default.
- W2258297590 cites W1964081637 @default.
- W2258297590 cites W1965696614 @default.
- W2258297590 cites W1968803237 @default.
- W2258297590 cites W1969830040 @default.
- W2258297590 cites W1971779604 @default.
- W2258297590 cites W1972729329 @default.
- W2258297590 cites W1972982987 @default.
- W2258297590 cites W1980216394 @default.
- W2258297590 cites W1980264728 @default.
- W2258297590 cites W1980402998 @default.
- W2258297590 cites W1984894632 @default.
- W2258297590 cites W1987952733 @default.
- W2258297590 cites W1988604250 @default.
- W2258297590 cites W1991980035 @default.
- W2258297590 cites W1994063627 @default.
- W2258297590 cites W1994213559 @default.
- W2258297590 cites W1997336463 @default.
- W2258297590 cites W1998266805 @default.
- W2258297590 cites W2001018311 @default.
- W2258297590 cites W2005064431 @default.
- W2258297590 cites W2010803096 @default.
- W2258297590 cites W2011495522 @default.
- W2258297590 cites W2013492186 @default.
- W2258297590 cites W2019323854 @default.
- W2258297590 cites W2021014599 @default.
- W2258297590 cites W2023116072 @default.
- W2258297590 cites W2025729481 @default.
- W2258297590 cites W2026985124 @default.
- W2258297590 cites W2028344502 @default.
- W2258297590 cites W2032572296 @default.
- W2258297590 cites W2033728952 @default.
- W2258297590 cites W2038048002 @default.
- W2258297590 cites W2039254322 @default.
- W2258297590 cites W2042348608 @default.
- W2258297590 cites W2042492216 @default.
- W2258297590 cites W2047603692 @default.
- W2258297590 cites W2052259480 @default.
- W2258297590 cites W2055069556 @default.
- W2258297590 cites W2062987822 @default.
- W2258297590 cites W2068336593 @default.
- W2258297590 cites W2069715982 @default.
- W2258297590 cites W2069850141 @default.
- W2258297590 cites W2077699379 @default.
- W2258297590 cites W2077841486 @default.
- W2258297590 cites W2078959525 @default.
- W2258297590 cites W2080712680 @default.
- W2258297590 cites W2081225172 @default.
- W2258297590 cites W2083094683 @default.
- W2258297590 cites W2084208871 @default.
- W2258297590 cites W2086350100 @default.
- W2258297590 cites W2094815515 @default.
- W2258297590 cites W2097846222 @default.
- W2258297590 cites W2099879786 @default.
- W2258297590 cites W2144350773 @default.
- W2258297590 cites W2156328797 @default.
- W2258297590 cites W2160316077 @default.
- W2258297590 cites W2160672199 @default.
- W2258297590 cites W2318009062 @default.
- W2258297590 cites W3022457912 @default.
- W2258297590 cites W4242369912 @default.
- W2258297590 doi "https://doi.org/10.1021/jp200124k" @default.
- W2258297590 hasPublicationYear "2011" @default.
- W2258297590 type Work @default.
- W2258297590 sameAs 2258297590 @default.
- W2258297590 citedByCount "54" @default.
- W2258297590 countsByYear W22582975902012 @default.
- W2258297590 countsByYear W22582975902013 @default.
- W2258297590 countsByYear W22582975902014 @default.
- W2258297590 countsByYear W22582975902015 @default.
- W2258297590 countsByYear W22582975902016 @default.
- W2258297590 countsByYear W22582975902017 @default.
- W2258297590 countsByYear W22582975902018 @default.
- W2258297590 countsByYear W22582975902019 @default.
- W2258297590 countsByYear W22582975902020 @default.
- W2258297590 countsByYear W22582975902021 @default.
- W2258297590 countsByYear W22582975902022 @default.
- W2258297590 countsByYear W22582975902023 @default.
- W2258297590 crossrefType "journal-article" @default.
- W2258297590 hasAuthorship W2258297590A5010923945 @default.
- W2258297590 hasAuthorship W2258297590A5015256126 @default.
- W2258297590 hasAuthorship W2258297590A5023982747 @default.
- W2258297590 hasAuthorship W2258297590A5045295975 @default.
- W2258297590 hasAuthorship W2258297590A5055895408 @default.