Matches in SemOpenAlex for { <https://semopenalex.org/work/W2258592181> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W2258592181 endingPage "452" @default.
- W2258592181 startingPage "445" @default.
- W2258592181 abstract "The purpose of this comment is to correct mistaken assumptions and claims made in the paper “Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker–Planck equations” by T. D. Frank [T.D. Frank, Stochastic feedback, non-linear families of Markov processes, and nonlinear Fokker–Planck equations, Physica A 331 (2004) 391]. Our comment centers on the claims of a “non-linear Markov process” and a “non-linear Fokker–Planck equation.” First, memory in transition densities is misidentified as a Markov process. Second, the paper assumes that one can derive a Fokker–Planck equation from a Chapman–Kolmogorov equation, but no proof was offered that a Chapman–Kolmogorov equation exists for the memory-dependent processes considered. A “non-linear Markov process” is claimed on the basis of a non-linear diffusion pde for a 1-point probability density. We show that, regardless of which initial value problem one may solve for the 1-point density, the resulting stochastic process, defined necessarily by the conditional probabilities (the transition probabilities), is either an ordinary linearly generated Markovian one, or else is a linearly generated non-Markovian process with memory. We provide explicit examples of diffusion coefficients that reflect both the Markovian and the memory-dependent cases. So there is neither a “non-linear Markov process”, nor a “non-linear Fokker–Planck equation” for a conditional probability density. The confusion rampant in the literature arises in part from labeling a non-linear diffusion equation for a 1-point probability density as “non-linear Fokker–Planck,” whereas neither a 1-point density nor an equation of motion for a 1-point density can define a stochastic process. In a closely related context, we point out that Borland misidentified a translation invariant 1-point probability density derived from a non-linear diffusion equation as a conditional probability density. Finally, in the Appendix A we present the theory of Fokker–Planck pdes and Chapman–Kolmogorov equations for stochastic processes with finite memory." @default.
- W2258592181 created "2016-06-24" @default.
- W2258592181 creator A5081170709 @default.
- W2258592181 date "2007-08-01" @default.
- W2258592181 modified "2023-10-02" @default.
- W2258592181 title "A comment on the paper “Stochastic feedback, nonlinear families of Markov processes, and nonlinear Fokker–Planck equations” by T.D. Frank" @default.
- W2258592181 cites W1975148091 @default.
- W2258592181 cites W1982937360 @default.
- W2258592181 cites W1983894109 @default.
- W2258592181 cites W1985149989 @default.
- W2258592181 cites W2004333336 @default.
- W2258592181 cites W2031496985 @default.
- W2258592181 cites W2073288894 @default.
- W2258592181 cites W2078597321 @default.
- W2258592181 cites W2123923048 @default.
- W2258592181 cites W2146383253 @default.
- W2258592181 doi "https://doi.org/10.1016/j.physa.2007.03.020" @default.
- W2258592181 hasPublicationYear "2007" @default.
- W2258592181 type Work @default.
- W2258592181 sameAs 2258592181 @default.
- W2258592181 citedByCount "21" @default.
- W2258592181 countsByYear W22585921812012 @default.
- W2258592181 countsByYear W22585921812013 @default.
- W2258592181 countsByYear W22585921812017 @default.
- W2258592181 countsByYear W22585921812018 @default.
- W2258592181 countsByYear W22585921812020 @default.
- W2258592181 crossrefType "journal-article" @default.
- W2258592181 hasAuthorship W2258592181A5081170709 @default.
- W2258592181 hasBestOaLocation W22585921812 @default.
- W2258592181 hasConcept C105795698 @default.
- W2258592181 hasConcept C121332964 @default.
- W2258592181 hasConcept C121864883 @default.
- W2258592181 hasConcept C134306372 @default.
- W2258592181 hasConcept C158622935 @default.
- W2258592181 hasConcept C159886148 @default.
- W2258592181 hasConcept C163836022 @default.
- W2258592181 hasConcept C189973286 @default.
- W2258592181 hasConcept C28826006 @default.
- W2258592181 hasConcept C3017618536 @default.
- W2258592181 hasConcept C33923547 @default.
- W2258592181 hasConcept C41008148 @default.
- W2258592181 hasConcept C43555835 @default.
- W2258592181 hasConcept C56739046 @default.
- W2258592181 hasConcept C62520636 @default.
- W2258592181 hasConcept C68710425 @default.
- W2258592181 hasConcept C69123182 @default.
- W2258592181 hasConcept C8272713 @default.
- W2258592181 hasConcept C93779851 @default.
- W2258592181 hasConcept C98735484 @default.
- W2258592181 hasConcept C98763669 @default.
- W2258592181 hasConceptScore W2258592181C105795698 @default.
- W2258592181 hasConceptScore W2258592181C121332964 @default.
- W2258592181 hasConceptScore W2258592181C121864883 @default.
- W2258592181 hasConceptScore W2258592181C134306372 @default.
- W2258592181 hasConceptScore W2258592181C158622935 @default.
- W2258592181 hasConceptScore W2258592181C159886148 @default.
- W2258592181 hasConceptScore W2258592181C163836022 @default.
- W2258592181 hasConceptScore W2258592181C189973286 @default.
- W2258592181 hasConceptScore W2258592181C28826006 @default.
- W2258592181 hasConceptScore W2258592181C3017618536 @default.
- W2258592181 hasConceptScore W2258592181C33923547 @default.
- W2258592181 hasConceptScore W2258592181C41008148 @default.
- W2258592181 hasConceptScore W2258592181C43555835 @default.
- W2258592181 hasConceptScore W2258592181C56739046 @default.
- W2258592181 hasConceptScore W2258592181C62520636 @default.
- W2258592181 hasConceptScore W2258592181C68710425 @default.
- W2258592181 hasConceptScore W2258592181C69123182 @default.
- W2258592181 hasConceptScore W2258592181C8272713 @default.
- W2258592181 hasConceptScore W2258592181C93779851 @default.
- W2258592181 hasConceptScore W2258592181C98735484 @default.
- W2258592181 hasConceptScore W2258592181C98763669 @default.
- W2258592181 hasIssue "2" @default.
- W2258592181 hasLocation W22585921811 @default.
- W2258592181 hasLocation W22585921812 @default.
- W2258592181 hasOpenAccess W2258592181 @default.
- W2258592181 hasPrimaryLocation W22585921811 @default.
- W2258592181 hasRelatedWork W1484548682 @default.
- W2258592181 hasRelatedWork W1596250232 @default.
- W2258592181 hasRelatedWork W2019735591 @default.
- W2258592181 hasRelatedWork W2079452975 @default.
- W2258592181 hasRelatedWork W2141010020 @default.
- W2258592181 hasRelatedWork W2262132063 @default.
- W2258592181 hasRelatedWork W3022014775 @default.
- W2258592181 hasRelatedWork W4243078490 @default.
- W2258592181 hasRelatedWork W4287550748 @default.
- W2258592181 hasRelatedWork W5883800 @default.
- W2258592181 hasVolume "382" @default.
- W2258592181 isParatext "false" @default.
- W2258592181 isRetracted "false" @default.
- W2258592181 magId "2258592181" @default.
- W2258592181 workType "article" @default.