Matches in SemOpenAlex for { <https://semopenalex.org/work/W2258847225> ?p ?o ?g. }
- W2258847225 abstract "Model-based control strategies for robot manipulators can present numerous performance advantages when an accurate model of the system dynamics is available. In practice, obtaining such a model is a challenging task which involves modeling such physical processes as friction, which may not be well understood and difficult to model. Furthermore, uncertainties in the physical parameters of a system may be introduced from significant discrepancies between the manufacturer data and the actual system. Traditionally, adaptive and robust control strategies have been developed to deal with parametric uncertainty in the dynamic model, but often require knowledge of the structure of the dynamics. Recent approaches to model-based manipulator control involve data-driven learning of the inverse dynamics relationship, eliminating the need for any a-priori knowledge of the system model. Locally Weighted Projection Regression (LWPR) has been proposed for learning the inverse dynamics function of a manipulator. Due to its use of simple local, linear models, LWPR is suitable for online and incremental learning. Although global regression techniques such as Gaussian Process Regression (GPR) have been shown to outperform LWPR in terms of accuracy, due to its heavy computational requirements, GPR has been applied mainly to offline learning of inverse dynamics. More recent efforts in making GPR computationally tractable for real-time control have resulted in several approximations which operate on a select subset, or sparse representation of the entire training data set. Despite the significant advancements that have been made in the area of learning control, there has not been much work in recent years to evaluate these newer regression techniques against traditional model-based control strategies such as adaptive control. Hence, the first portion of this thesis provides a comparison between a fixed model-based control strategy, an adaptive controller and the LWPR-based learning controller. Simulations are carried out in order to evaluate the position and orientation tracking performance of each controller under varied end effector loading, velocities and inaccuracies in the known dynamic parameters. Both the adaptive controller and LWPR controller are shown to have comparable performance in the presence of parametric uncertainty. However, it is shown that the learning controller is unable to generalize well outside of the regions in which it has been trained. Hence, achieving good performance requires significant amounts of training in the anticipated region of operation. In addition to poor generalization performance, most learning controllers commence learning entirely from ‘scratch,’ making no use of any a-priori knowledge which may be available from the well-known rigid body dynamics (RBD) formulation. The second portion of this thesis develops two techniques for online, incremental learning algorithms which incorporate prior knowledge to improve generalization performance. First, prior knowledge" @default.
- W2258847225 created "2016-06-24" @default.
- W2258847225 creator A5030706458 @default.
- W2258847225 date "2011-09-30" @default.
- W2258847225 modified "2023-10-18" @default.
- W2258847225 title "Learning Inverse Dynamics for Robot Manipulator Control" @default.
- W2258847225 cites W1483845297 @default.
- W2258847225 cites W1515851193 @default.
- W2258847225 cites W1526489872 @default.
- W2258847225 cites W1663973292 @default.
- W2258847225 cites W1746819321 @default.
- W2258847225 cites W1949974402 @default.
- W2258847225 cites W1964357740 @default.
- W2258847225 cites W1966948790 @default.
- W2258847225 cites W1976606095 @default.
- W2258847225 cites W1988882685 @default.
- W2258847225 cites W1998179438 @default.
- W2258847225 cites W2002038293 @default.
- W2258847225 cites W2019965290 @default.
- W2258847225 cites W2041242313 @default.
- W2258847225 cites W2063358894 @default.
- W2258847225 cites W2083483041 @default.
- W2258847225 cites W2091881639 @default.
- W2258847225 cites W2098491426 @default.
- W2258847225 cites W2098841537 @default.
- W2258847225 cites W2099768828 @default.
- W2258847225 cites W2104752886 @default.
- W2258847225 cites W2107546765 @default.
- W2258847225 cites W2113362840 @default.
- W2258847225 cites W2116243329 @default.
- W2258847225 cites W2118587090 @default.
- W2258847225 cites W2121287102 @default.
- W2258847225 cites W2124776405 @default.
- W2258847225 cites W2125650133 @default.
- W2258847225 cites W2129417063 @default.
- W2258847225 cites W2129564505 @default.
- W2258847225 cites W2131259937 @default.
- W2258847225 cites W2143030776 @default.
- W2258847225 cites W2145618422 @default.
- W2258847225 cites W2146396918 @default.
- W2258847225 cites W2148178391 @default.
- W2258847225 cites W2150646391 @default.
- W2258847225 cites W2153192722 @default.
- W2258847225 cites W2153682458 @default.
- W2258847225 cites W2154174243 @default.
- W2258847225 cites W2157059780 @default.
- W2258847225 cites W2161872510 @default.
- W2258847225 cites W2164032318 @default.
- W2258847225 cites W2165643318 @default.
- W2258847225 cites W2167354091 @default.
- W2258847225 cites W2167804690 @default.
- W2258847225 cites W2168921921 @default.
- W2258847225 cites W2171900491 @default.
- W2258847225 cites W2246023205 @default.
- W2258847225 cites W2323447981 @default.
- W2258847225 cites W568924265 @default.
- W2258847225 cites W601351931 @default.
- W2258847225 cites W2742494604 @default.
- W2258847225 hasPublicationYear "2011" @default.
- W2258847225 type Work @default.
- W2258847225 sameAs 2258847225 @default.
- W2258847225 citedByCount "0" @default.
- W2258847225 crossrefType "dissertation" @default.
- W2258847225 hasAuthorship W2258847225A5030706458 @default.
- W2258847225 hasConcept C105795698 @default.
- W2258847225 hasConcept C111472728 @default.
- W2258847225 hasConcept C111919701 @default.
- W2258847225 hasConcept C117251300 @default.
- W2258847225 hasConcept C119857082 @default.
- W2258847225 hasConcept C121332964 @default.
- W2258847225 hasConcept C127413603 @default.
- W2258847225 hasConcept C133731056 @default.
- W2258847225 hasConcept C138885662 @default.
- W2258847225 hasConcept C154945302 @default.
- W2258847225 hasConcept C163716315 @default.
- W2258847225 hasConcept C17744445 @default.
- W2258847225 hasConcept C187523126 @default.
- W2258847225 hasConcept C199539241 @default.
- W2258847225 hasConcept C2775924081 @default.
- W2258847225 hasConcept C2776359362 @default.
- W2258847225 hasConcept C33923547 @default.
- W2258847225 hasConcept C39920418 @default.
- W2258847225 hasConcept C41008148 @default.
- W2258847225 hasConcept C47446073 @default.
- W2258847225 hasConcept C61326573 @default.
- W2258847225 hasConcept C62520636 @default.
- W2258847225 hasConcept C74650414 @default.
- W2258847225 hasConcept C75553542 @default.
- W2258847225 hasConcept C77405623 @default.
- W2258847225 hasConcept C81692654 @default.
- W2258847225 hasConcept C94625758 @default.
- W2258847225 hasConcept C98045186 @default.
- W2258847225 hasConceptScore W2258847225C105795698 @default.
- W2258847225 hasConceptScore W2258847225C111472728 @default.
- W2258847225 hasConceptScore W2258847225C111919701 @default.
- W2258847225 hasConceptScore W2258847225C117251300 @default.
- W2258847225 hasConceptScore W2258847225C119857082 @default.
- W2258847225 hasConceptScore W2258847225C121332964 @default.
- W2258847225 hasConceptScore W2258847225C127413603 @default.
- W2258847225 hasConceptScore W2258847225C133731056 @default.