Matches in SemOpenAlex for { <https://semopenalex.org/work/W2259014215> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2259014215 endingPage "224" @default.
- W2259014215 startingPage "224" @default.
- W2259014215 abstract "This presentation reports on the development of unique formulation of nanoelectrofuel anodes for flow batteries. Nanoelectrofuel electrodes are essentially nanofluids prepared from the battery active materials – e.g. nanoparticles stably suspended in base electrolyte. This novel technology leverages the properties of conventional solid state batteries, flow batteries and nanofluid technology [1]. Nanoelectrofuels have high concentrations of active materials and exhibit liquid behavior in a wide range of temperatures for good flow and pump performance. This novel class of high energy-density liquid energy storage is used in combination with uniquely designed flow battery cells. By utilizing nano-sized active materials the charge and discharge rates are enhanced due to shorter diffusion paths. The surface of the nanoparticles are engineered to allow for minimal viscosity while maximizing the concentration of active materials in liquid to ensure high energy density. Nanoelectrofuel approach differentiates from semi-solid flow battery systems [2] by utilization of surface modified nanoparticles without the aid of any conductive additives. The nanoelectrofuel technology also offers a host of benefits, including superior heat transfer capabilities, separation of the power and energy components (size of the flow cell stack defines the power while volume of nanoelectrofuel storage defines the energy capacity), and ability for rapid charge replenishment through replacement of discharged nanoelectrofuels to the charged ones. Nanofluids have been traditionally studied for their advanced thermal properties [3]. One of the main challenges in nanofluid and nanoelectrofuel engineering is achieving high concentration of nanomaterial in suspension without dramatic increase in viscosity. Most studies on nanofluids for heat transfer have only reported on nanoparticle loadings less than 10 wt. % because of non-linear viscosity increase with increasing particle concentration, making them unfeasible for use as coolants. In this work we have developed nanofluids that are both electrochemically active and can be prepared with high concentration of nanoparticles with manageable increases in viscosity. This presentation will report on a surface modification procedures developed for anatase titania (TiO 2 ) and iron oxide (Fe 2 O 3 ) nanoparticles that enables nanofluids with relatively low viscosity (<5 cP at 50 wt%) as compared to their unmodified counterparts. Modified nanoparticles were characterized with x-ray diffraction (XRD), scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). Modified and un-modified materials were studied electrochemically in both casted-on solid state form and as suspension nanoelectrofuel electrodes in half cell configuration in aqueous electrolytes. Charge/discharge curves show that close to theoretical capacity (334 mAh/g) of iron oxide can be achieved in both casted and nanoelectrofuel forms with faradaic efficiency of ~80%. Casted Fe 2 O 3 anodes were also studied in situ with x-ray absorption spectroscopy (XAS) to gather information on local and electronic environment of Fe atoms. Modelling of XAS spectra (XANES and EXAFS) allowed us better understanding of charge, discharge, and electrode failure mechanisms. Additional electrochemical tests with varying charge rates, nanoparticle concentrations and geometric area of the current collector are also conducted to assess kinetics and coulombic efficiency of the nanoelectrofuel electrode. Engineering the surface of nanoparticles to control the rheological and electrochemical properties of the resulting nanofluids is a promising approach towards realizing the high energy density nanoelectrofuel flow batteries. Future endeavors will be directed towards expanding the gallery of available chemistries. References E.V. Timofeeva, J.P. Katsoudas, C.U. Segre, D. Singh, “Rechargeable Nanofluid Electrodes for High Energy Density Flow Battery”, Cleantech 2013, Chapter 9, Energy storage, pp. 363-366. M. Duduta, B. Ho, V.C. Wood, P. Limthongkul, V. Brunini, C.Carter, Y-M. Chiang, Adv. Energy Mater . 2011 , 1 , 511-516. E. V. Timofeeva, CHAPTER: Nanofluids for Heat Transfer: Potential and Engineering Strategies, BOOK TITLE: Two Phase Flow, Phase Change and Numerical Modeling, Ed.: A. Ahsan, InTech, September 2011 (ISBN 978-953-307-584-6)." @default.
- W2259014215 created "2016-06-24" @default.
- W2259014215 creator A5010760949 @default.
- W2259014215 creator A5012216430 @default.
- W2259014215 creator A5020920802 @default.
- W2259014215 creator A5043189039 @default.
- W2259014215 creator A5060542838 @default.
- W2259014215 creator A5078703832 @default.
- W2259014215 date "2015-04-29" @default.
- W2259014215 modified "2023-09-25" @default.
- W2259014215 title "Development of Nanoelectrofuel Electrodes for Flow Batteries : Rheology and Electrochemistry of Fluidized Nanoparticles" @default.
- W2259014215 doi "https://doi.org/10.1149/ma2015-01/1/224" @default.
- W2259014215 hasPublicationYear "2015" @default.
- W2259014215 type Work @default.
- W2259014215 sameAs 2259014215 @default.
- W2259014215 citedByCount "3" @default.
- W2259014215 countsByYear W22590142152016 @default.
- W2259014215 countsByYear W22590142152019 @default.
- W2259014215 crossrefType "journal-article" @default.
- W2259014215 hasAuthorship W2259014215A5010760949 @default.
- W2259014215 hasAuthorship W2259014215A5012216430 @default.
- W2259014215 hasAuthorship W2259014215A5020920802 @default.
- W2259014215 hasAuthorship W2259014215A5043189039 @default.
- W2259014215 hasAuthorship W2259014215A5060542838 @default.
- W2259014215 hasAuthorship W2259014215A5078703832 @default.
- W2259014215 hasConcept C121332964 @default.
- W2259014215 hasConcept C127172972 @default.
- W2259014215 hasConcept C127413603 @default.
- W2259014215 hasConcept C147789679 @default.
- W2259014215 hasConcept C155672457 @default.
- W2259014215 hasConcept C159985019 @default.
- W2259014215 hasConcept C163258240 @default.
- W2259014215 hasConcept C171250308 @default.
- W2259014215 hasConcept C17525397 @default.
- W2259014215 hasConcept C185592680 @default.
- W2259014215 hasConcept C192562407 @default.
- W2259014215 hasConcept C21946209 @default.
- W2259014215 hasConcept C42360764 @default.
- W2259014215 hasConcept C50517652 @default.
- W2259014215 hasConcept C555008776 @default.
- W2259014215 hasConcept C68801617 @default.
- W2259014215 hasConcept C73916439 @default.
- W2259014215 hasConcept C89395315 @default.
- W2259014215 hasConcept C97355855 @default.
- W2259014215 hasConceptScore W2259014215C121332964 @default.
- W2259014215 hasConceptScore W2259014215C127172972 @default.
- W2259014215 hasConceptScore W2259014215C127413603 @default.
- W2259014215 hasConceptScore W2259014215C147789679 @default.
- W2259014215 hasConceptScore W2259014215C155672457 @default.
- W2259014215 hasConceptScore W2259014215C159985019 @default.
- W2259014215 hasConceptScore W2259014215C163258240 @default.
- W2259014215 hasConceptScore W2259014215C171250308 @default.
- W2259014215 hasConceptScore W2259014215C17525397 @default.
- W2259014215 hasConceptScore W2259014215C185592680 @default.
- W2259014215 hasConceptScore W2259014215C192562407 @default.
- W2259014215 hasConceptScore W2259014215C21946209 @default.
- W2259014215 hasConceptScore W2259014215C42360764 @default.
- W2259014215 hasConceptScore W2259014215C50517652 @default.
- W2259014215 hasConceptScore W2259014215C555008776 @default.
- W2259014215 hasConceptScore W2259014215C68801617 @default.
- W2259014215 hasConceptScore W2259014215C73916439 @default.
- W2259014215 hasConceptScore W2259014215C89395315 @default.
- W2259014215 hasConceptScore W2259014215C97355855 @default.
- W2259014215 hasIssue "1" @default.
- W2259014215 hasLocation W22590142151 @default.
- W2259014215 hasOpenAccess W2259014215 @default.
- W2259014215 hasPrimaryLocation W22590142151 @default.
- W2259014215 hasRelatedWork W1979720172 @default.
- W2259014215 hasRelatedWork W2073156927 @default.
- W2259014215 hasRelatedWork W2113699494 @default.
- W2259014215 hasRelatedWork W2208706808 @default.
- W2259014215 hasRelatedWork W2247347699 @default.
- W2259014215 hasRelatedWork W2482258977 @default.
- W2259014215 hasRelatedWork W2883157818 @default.
- W2259014215 hasRelatedWork W2887805927 @default.
- W2259014215 hasRelatedWork W2890491419 @default.
- W2259014215 hasRelatedWork W2986348256 @default.
- W2259014215 hasVolume "MA2015-01" @default.
- W2259014215 isParatext "false" @default.
- W2259014215 isRetracted "false" @default.
- W2259014215 magId "2259014215" @default.
- W2259014215 workType "article" @default.