Matches in SemOpenAlex for { <https://semopenalex.org/work/W2259562706> ?p ?o ?g. }
- W2259562706 endingPage "77" @default.
- W2259562706 startingPage "74" @default.
- W2259562706 abstract "By coupling donor spins in silicon to a superconducting microwave cavity and tuning the spins to the cavity resonance, the rate of spin relaxation is increased by three orders of magnitude compared to that of detuned spins; in such a regime, spontaneous emission of radiation is the dominant mechanism of spin relaxation. The Purcell effect, in which the slow rate of spontaneous emission from a quantum system is accelerated in a resonant cavity, is central to quantum optics. Here, Patrice Bertet and colleagues demonstrate an analogue of the Purcell effect in a system of spins in solids. The spontaneous emission in this system affects spin relaxation, and the authors show how to modulate spin relaxation through three orders of magnitude. This could give researchers a means of controlling and tuning spin relaxation. Spins in solids, in this case donor spins in silicon, are promising platforms for quantum information processing, and this technique could have ramifications for new spin qubit architectures. Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized1 that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave2 or optical3,4 cavities, and is essential for the realization of high-efficiency single-photon sources5. Here we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing6. They also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons." @default.
- W2259562706 created "2016-06-24" @default.
- W2259562706 creator A5009545524 @default.
- W2259562706 creator A5020418381 @default.
- W2259562706 creator A5021396335 @default.
- W2259562706 creator A5030780114 @default.
- W2259562706 creator A5033073814 @default.
- W2259562706 creator A5034042048 @default.
- W2259562706 creator A5036974709 @default.
- W2259562706 creator A5047131832 @default.
- W2259562706 creator A5048713725 @default.
- W2259562706 creator A5058327387 @default.
- W2259562706 creator A5060174425 @default.
- W2259562706 creator A5070143479 @default.
- W2259562706 date "2016-02-15" @default.
- W2259562706 modified "2023-10-16" @default.
- W2259562706 title "Controlling spin relaxation with a cavity" @default.
- W2259562706 cites W1003822170 @default.
- W2259562706 cites W1968086833 @default.
- W2259562706 cites W1973736387 @default.
- W2259562706 cites W1977436045 @default.
- W2259562706 cites W1983718136 @default.
- W2259562706 cites W1984279171 @default.
- W2259562706 cites W1985342343 @default.
- W2259562706 cites W1989844730 @default.
- W2259562706 cites W1992241136 @default.
- W2259562706 cites W2000008129 @default.
- W2259562706 cites W2004092534 @default.
- W2259562706 cites W2004970421 @default.
- W2259562706 cites W2024556312 @default.
- W2259562706 cites W2025302130 @default.
- W2259562706 cites W2033019961 @default.
- W2259562706 cites W2043521003 @default.
- W2259562706 cites W2046762491 @default.
- W2259562706 cites W2050579674 @default.
- W2259562706 cites W2053782806 @default.
- W2259562706 cites W2059150048 @default.
- W2259562706 cites W2068329612 @default.
- W2259562706 cites W2069474336 @default.
- W2259562706 cites W2079450756 @default.
- W2259562706 cites W2082228840 @default.
- W2259562706 cites W2088933541 @default.
- W2259562706 cites W2091992282 @default.
- W2259562706 cites W2092300926 @default.
- W2259562706 cites W2095145702 @default.
- W2259562706 cites W2107712419 @default.
- W2259562706 cites W2134598659 @default.
- W2259562706 cites W2162280124 @default.
- W2259562706 cites W2230638509 @default.
- W2259562706 cites W3037853801 @default.
- W2259562706 cites W4254297188 @default.
- W2259562706 doi "https://doi.org/10.1038/nature16944" @default.
- W2259562706 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26878235" @default.
- W2259562706 hasPublicationYear "2016" @default.
- W2259562706 type Work @default.
- W2259562706 sameAs 2259562706 @default.
- W2259562706 citedByCount "126" @default.
- W2259562706 countsByYear W22595627062016 @default.
- W2259562706 countsByYear W22595627062017 @default.
- W2259562706 countsByYear W22595627062018 @default.
- W2259562706 countsByYear W22595627062019 @default.
- W2259562706 countsByYear W22595627062020 @default.
- W2259562706 countsByYear W22595627062021 @default.
- W2259562706 countsByYear W22595627062022 @default.
- W2259562706 countsByYear W22595627062023 @default.
- W2259562706 crossrefType "journal-article" @default.
- W2259562706 hasAuthorship W2259562706A5009545524 @default.
- W2259562706 hasAuthorship W2259562706A5020418381 @default.
- W2259562706 hasAuthorship W2259562706A5021396335 @default.
- W2259562706 hasAuthorship W2259562706A5030780114 @default.
- W2259562706 hasAuthorship W2259562706A5033073814 @default.
- W2259562706 hasAuthorship W2259562706A5034042048 @default.
- W2259562706 hasAuthorship W2259562706A5036974709 @default.
- W2259562706 hasAuthorship W2259562706A5047131832 @default.
- W2259562706 hasAuthorship W2259562706A5048713725 @default.
- W2259562706 hasAuthorship W2259562706A5058327387 @default.
- W2259562706 hasAuthorship W2259562706A5060174425 @default.
- W2259562706 hasAuthorship W2259562706A5070143479 @default.
- W2259562706 hasBestOaLocation W22595627062 @default.
- W2259562706 hasConcept C111154242 @default.
- W2259562706 hasConcept C121332964 @default.
- W2259562706 hasConcept C15744967 @default.
- W2259562706 hasConcept C181500209 @default.
- W2259562706 hasConcept C184779094 @default.
- W2259562706 hasConcept C203087015 @default.
- W2259562706 hasConcept C26873012 @default.
- W2259562706 hasConcept C2776029896 @default.
- W2259562706 hasConcept C2778870898 @default.
- W2259562706 hasConcept C42704618 @default.
- W2259562706 hasConcept C520434653 @default.
- W2259562706 hasConcept C62520636 @default.
- W2259562706 hasConcept C77805123 @default.
- W2259562706 hasConcept C84114770 @default.
- W2259562706 hasConcept C97355855 @default.
- W2259562706 hasConceptScore W2259562706C111154242 @default.
- W2259562706 hasConceptScore W2259562706C121332964 @default.
- W2259562706 hasConceptScore W2259562706C15744967 @default.
- W2259562706 hasConceptScore W2259562706C181500209 @default.