Matches in SemOpenAlex for { <https://semopenalex.org/work/W2259577537> ?p ?o ?g. }
- W2259577537 abstract "Markov random field (MRF) model provides an elegant probabilistic framework to formulate inter-dependency between a large number of random variables. In this thesis, we present a new approximation algorithm for computing Maximum a Posteriori (MAP) and the log-partition function for arbitrary positive pair-wise MRF defined on a graph G. Our algorithm is based on decomposition of G into appropriately chosen small components; then computing estimates locally in each of these components and then producing a good global solution. We show that if either G excludes some finite-sized graph as its minor (e.g. planar graph) and has a constant degree bound, or G is a polynomially growing graph, then our algorithm produce solutions for both questions within arbitrary accuracy. The running time of the algorithm is linear on the number of nodes in G, with constant dependent on the accuracy. We apply our algorithm for MAP computation to the problem of learning the capacity region of wireless networks. We consider wireless networks of nodes placed in some geographic area in an arbitrary manner under interference constraints. We propose a polynomial time approximate algorithm to determine whether a given vector of end-to-end rates between various source-destination pairs can be supported by the network through a combination of routing and scheduling decisions. Lastly, we investigate the problem of computing loss probabilities of routes in a stochastic loss network, which is equivalent to computing the partition function of the corresponding MRF for the exact stationary distribution. We show that the very popular Erlang approximation provide relatively poor performance estimates, especially for loss networks in the critically loaded regime. Then we propose a novel algorithm for estimating the stationary loss probabilities, which is shown to always converge, exponentially fast, to the asymptotically exact results. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253-1690.)" @default.
- W2259577537 created "2016-06-24" @default.
- W2259577537 creator A5029499294 @default.
- W2259577537 creator A5077832834 @default.
- W2259577537 date "2009-01-01" @default.
- W2259577537 modified "2023-09-24" @default.
- W2259577537 title "Approximate inference: decomposition methods with applications to networks" @default.
- W2259577537 cites W100489996 @default.
- W2259577537 cites W1507653385 @default.
- W2259577537 cites W1512866443 @default.
- W2259577537 cites W1523004878 @default.
- W2259577537 cites W1536930200 @default.
- W2259577537 cites W1545381479 @default.
- W2259577537 cites W1574901103 @default.
- W2259577537 cites W1651266332 @default.
- W2259577537 cites W1957358235 @default.
- W2259577537 cites W1977398917 @default.
- W2259577537 cites W1986485496 @default.
- W2259577537 cites W1992103639 @default.
- W2259577537 cites W2002649876 @default.
- W2259577537 cites W2004322147 @default.
- W2259577537 cites W2022820481 @default.
- W2259577537 cites W2023678444 @default.
- W2259577537 cites W2028738060 @default.
- W2259577537 cites W2042899161 @default.
- W2259577537 cites W2048074087 @default.
- W2259577537 cites W2053491613 @default.
- W2259577537 cites W2053578961 @default.
- W2259577537 cites W2054426547 @default.
- W2259577537 cites W2059739072 @default.
- W2259577537 cites W2076426337 @default.
- W2259577537 cites W2079910606 @default.
- W2259577537 cites W2083838134 @default.
- W2259577537 cites W2089770904 @default.
- W2259577537 cites W2090084467 @default.
- W2259577537 cites W2098678088 @default.
- W2259577537 cites W2105177639 @default.
- W2259577537 cites W2106200738 @default.
- W2259577537 cites W2108553206 @default.
- W2259577537 cites W2108619558 @default.
- W2259577537 cites W2109341366 @default.
- W2259577537 cites W2113144894 @default.
- W2259577537 cites W2116962306 @default.
- W2259577537 cites W2121845267 @default.
- W2259577537 cites W2127248062 @default.
- W2259577537 cites W2135094946 @default.
- W2259577537 cites W2135356058 @default.
- W2259577537 cites W2136268609 @default.
- W2259577537 cites W2136453819 @default.
- W2259577537 cites W2137775453 @default.
- W2259577537 cites W2143516773 @default.
- W2259577537 cites W2159079944 @default.
- W2259577537 cites W2159080219 @default.
- W2259577537 cites W2159445174 @default.
- W2259577537 cites W2160988325 @default.
- W2259577537 cites W2162180430 @default.
- W2259577537 cites W2163208395 @default.
- W2259577537 cites W2164702649 @default.
- W2259577537 cites W2164710647 @default.
- W2259577537 cites W2164918853 @default.
- W2259577537 cites W2166177455 @default.
- W2259577537 cites W2170219906 @default.
- W2259577537 cites W2172205482 @default.
- W2259577537 cites W2330261917 @default.
- W2259577537 cites W2341534752 @default.
- W2259577537 cites W2751862591 @default.
- W2259577537 cites W2807232057 @default.
- W2259577537 cites W3097096317 @default.
- W2259577537 cites W3118259273 @default.
- W2259577537 cites W3135696298 @default.
- W2259577537 cites W412831655 @default.
- W2259577537 cites W91578190 @default.
- W2259577537 hasPublicationYear "2009" @default.
- W2259577537 type Work @default.
- W2259577537 sameAs 2259577537 @default.
- W2259577537 citedByCount "3" @default.
- W2259577537 countsByYear W22595775372014 @default.
- W2259577537 crossrefType "dissertation" @default.
- W2259577537 hasAuthorship W2259577537A5029499294 @default.
- W2259577537 hasAuthorship W2259577537A5077832834 @default.
- W2259577537 hasConcept C105795698 @default.
- W2259577537 hasConcept C11413529 @default.
- W2259577537 hasConcept C118615104 @default.
- W2259577537 hasConcept C124504099 @default.
- W2259577537 hasConcept C126255220 @default.
- W2259577537 hasConcept C132525143 @default.
- W2259577537 hasConcept C154945302 @default.
- W2259577537 hasConcept C155846161 @default.
- W2259577537 hasConcept C2776214188 @default.
- W2259577537 hasConcept C2777472644 @default.
- W2259577537 hasConcept C2778045648 @default.
- W2259577537 hasConcept C33923547 @default.
- W2259577537 hasConcept C41008148 @default.
- W2259577537 hasConcept C48903430 @default.
- W2259577537 hasConcept C49937458 @default.
- W2259577537 hasConcept C89600930 @default.
- W2259577537 hasConcept C98763669 @default.
- W2259577537 hasConceptScore W2259577537C105795698 @default.
- W2259577537 hasConceptScore W2259577537C11413529 @default.
- W2259577537 hasConceptScore W2259577537C118615104 @default.