Matches in SemOpenAlex for { <https://semopenalex.org/work/W22602208> ?p ?o ?g. }
- W22602208 abstract "Proteins are essential in all living organisms and they are involved in a myriad of biological functions. It is vital for cells to have efficient surveillance and quality control systems that ensure damaged proteins are either repaired to their functional state or quickly removed by degradation. Two crucial components of these protein quality systems are molecular chaperones and proteases, of which one major contributor is the AAA+ (ATPases Associated with diverse cellular Activities) family that includes the Clp proteases. The Clp protease exists in many forms of life, ranging from eubacteria to mammals. In the bacterium E. coli, the hexameric ATPases ClpX and ClpA recognize the substrate and once unfolded translocate it into the proteolytic core, which is formed by two heptameric rings of ClpP. The complexity of Clp proteases in terms of both composition and functionality is far greater in photosynthetic organisms compared with their bacterial counterparts. This is highlighted in the cyanobacterium Synechococcus elongatus (Synechococcus), which has at least two Clp proteases, the essential ClpCP3/R and the non-essential ClpXP1/P2. Of these various Clp proteins, the ClpR subunit is unique to photosynthetic organisms and is proteolytically inactive, while the existence of two ClpS adaptors (ClpS1 and ClpS2) is also unique for cyanobacteria. This thesis focuses on the continued characterization of these Clp proteins in Synechococcus. In paper I, two conserved motifs in the ClpR and one motif in the ClpP3 N-terminus were identified as being crucial for association to ClpC. It was also shown that these motifs were important for the stability of the ClpP3/R complex. A C-terminal motif in ClpC (the R-domain) was also demonstrated as conferring the specificity for ClpP3/R association. In paper II, the subunit stoichiometry of the ClpP1/P2 proteolytic core was determined by non-denaturing mass spectrometry. The proteolytic core was composed of an equal amount of ClpP1 and ClpP2 subunits arranged in an alternating pattern within each heptameric ring. The two double heptameric rings had dual stoichiometry, where two different proteolytic cores could be formed, (4ClpP1+3ClpP2) + (3ClpP1+4ClpP2) and 2×(3ClpP1+4ClpP2). In paper III, the functionality of the ClpP1/P2 protease was further characterized in vitro. ClpP1/P2 displayed the expected proteolytic activity with ClpX, but no activity was observed with ClpC. Both types of ClpP subunit appear to contribute to the proteolytic activity of the ClpP1/P2 core, but the arrangement of these two ClpP paralogs somehow limits the overall degradation rate. It was also revealed that ClpP2 alone could not assemble into higher molecular mass complexes, whereas ClpP1 readily formed a homo-tetradecamer that was proteolytically active with both ClpC and ClpX but whose activity was dependent on increased Mg 2+ concentrations. In paper IV, the cyanobacterialspecific ClpS2 adaptor was shown to be a relatively low-abundant, soluble protein that is essential for phototrophic growth. Like ClpS1, ClpS2 redirects the general substrate specificity of ClpC to N-end rule substrates, but the two adaptors differ in exactly which N-end rule substrates they target. ClpS1 recognizes Phe and Tyr as destabilizing amino acids, while ClpS2 recognizes Leu. In the final paper (paper V), the ΔclpS1 and ΔclpP2 mutants are shown to have greater resistance to exogenously added H2O2, while ΔclpP1 was extremely sensitive. The different phenotypes of these mutants were dependent on the level of the catalase peroxidase KatG, where elevated basal expression of the katG gene was responsible for the resistance observed in ΔclpS1 and ΔclpP2. In contrast, increased proteolysis of the KatG protein in ΔclpP1 caused the extreme sensitivity of this mutant to the oxidative stress. ISBN 978-91-85529-68-1" @default.
- W22602208 created "2016-06-24" @default.
- W22602208 creator A5044198116 @default.
- W22602208 date "2014-09-17" @default.
- W22602208 modified "2023-09-26" @default.
- W22602208 title "Structural and functional studies of the ATP-dependent Clp proteases in cyanobacteria" @default.
- W22602208 cites W111354659 @default.
- W22602208 cites W1483637431 @default.
- W22602208 cites W1512031035 @default.
- W22602208 cites W1531926711 @default.
- W22602208 cites W1537102081 @default.
- W22602208 cites W1538899778 @default.
- W22602208 cites W1539516473 @default.
- W22602208 cites W1542150214 @default.
- W22602208 cites W1542936268 @default.
- W22602208 cites W1547976855 @default.
- W22602208 cites W1550292471 @default.
- W22602208 cites W1564936970 @default.
- W22602208 cites W1571161105 @default.
- W22602208 cites W1571361882 @default.
- W22602208 cites W1586874910 @default.
- W22602208 cites W1590559618 @default.
- W22602208 cites W1597620505 @default.
- W22602208 cites W1603134043 @default.
- W22602208 cites W1661545150 @default.
- W22602208 cites W1730564863 @default.
- W22602208 cites W1743380859 @default.
- W22602208 cites W1743772167 @default.
- W22602208 cites W1746958425 @default.
- W22602208 cites W1754967630 @default.
- W22602208 cites W1799526184 @default.
- W22602208 cites W1817917871 @default.
- W22602208 cites W1822881903 @default.
- W22602208 cites W1851873120 @default.
- W22602208 cites W1863924973 @default.
- W22602208 cites W1875835053 @default.
- W22602208 cites W1926946171 @default.
- W22602208 cites W1947714406 @default.
- W22602208 cites W1963434023 @default.
- W22602208 cites W1963906290 @default.
- W22602208 cites W1966559223 @default.
- W22602208 cites W1967824952 @default.
- W22602208 cites W1968000268 @default.
- W22602208 cites W1968086374 @default.
- W22602208 cites W1969528513 @default.
- W22602208 cites W1969753962 @default.
- W22602208 cites W1970071348 @default.
- W22602208 cites W1970123479 @default.
- W22602208 cites W1971841367 @default.
- W22602208 cites W1972317279 @default.
- W22602208 cites W1972586109 @default.
- W22602208 cites W1973044252 @default.
- W22602208 cites W1974090018 @default.
- W22602208 cites W1974268434 @default.
- W22602208 cites W1975460230 @default.
- W22602208 cites W1977266560 @default.
- W22602208 cites W1978099201 @default.
- W22602208 cites W1978726512 @default.
- W22602208 cites W1978824717 @default.
- W22602208 cites W1979663825 @default.
- W22602208 cites W1979956165 @default.
- W22602208 cites W1980813368 @default.
- W22602208 cites W1981379092 @default.
- W22602208 cites W1983345237 @default.
- W22602208 cites W1983416965 @default.
- W22602208 cites W1985253447 @default.
- W22602208 cites W1988986229 @default.
- W22602208 cites W1990148399 @default.
- W22602208 cites W1991037665 @default.
- W22602208 cites W1991345254 @default.
- W22602208 cites W1992602287 @default.
- W22602208 cites W1993153742 @default.
- W22602208 cites W1994561051 @default.
- W22602208 cites W1995673848 @default.
- W22602208 cites W1996490581 @default.
- W22602208 cites W1997978648 @default.
- W22602208 cites W1999119754 @default.
- W22602208 cites W1999467171 @default.
- W22602208 cites W1999879806 @default.
- W22602208 cites W2000608548 @default.
- W22602208 cites W2002144817 @default.
- W22602208 cites W2002741389 @default.
- W22602208 cites W2003095772 @default.
- W22602208 cites W2003653593 @default.
- W22602208 cites W2003924932 @default.
- W22602208 cites W2004747515 @default.
- W22602208 cites W2008492694 @default.
- W22602208 cites W2008531306 @default.
- W22602208 cites W2010053404 @default.
- W22602208 cites W2011313101 @default.
- W22602208 cites W2011738094 @default.
- W22602208 cites W2012195402 @default.
- W22602208 cites W2012529432 @default.
- W22602208 cites W2012731700 @default.
- W22602208 cites W2014951926 @default.
- W22602208 cites W2015296784 @default.
- W22602208 cites W2015860806 @default.
- W22602208 cites W2017122078 @default.
- W22602208 cites W2017188875 @default.
- W22602208 cites W2019260822 @default.