Matches in SemOpenAlex for { <https://semopenalex.org/work/W2260696579> ?p ?o ?g. }
- W2260696579 endingPage "135" @default.
- W2260696579 startingPage "122" @default.
- W2260696579 abstract "This study investigates whether taking genre into account is beneficial for automatic music mood annotation in terms of core affects valence, arousal, and tension, as well as several other mood scales. Novel techniques employing genre-adaptive semantic computing and audio-based modelling are proposed. A technique called the ACTwg employs genre-adaptive semantic computing of mood-related social tags, whereas ACTwg-SLPwg combines semantic computing and audio-based modelling, both in a genre-adaptive manner. The proposed techniques are experimentally evaluated at predicting listener ratings related to a set of 600 popular music tracks spanning multiple genres. The results show that ACTwg outperforms a semantic computing technique that does not exploit genre information, and ACTwg-SLPwg outperforms conventional techniques and other genre-adaptive alternatives. In particular, improvements in the prediction rates are obtained for the valence dimension which is typically the most challenging core affect dimension for audio-based annotation. The specificity of genre categories is not crucial for the performance of ACTwg-SLPwg. The study also presents analytical insights into inferring a concise tag-based genre representation for genre-adaptive music mood analysis." @default.
- W2260696579 created "2016-06-24" @default.
- W2260696579 creator A5032485940 @default.
- W2260696579 creator A5032798767 @default.
- W2260696579 creator A5039535349 @default.
- W2260696579 creator A5041892847 @default.
- W2260696579 creator A5074494743 @default.
- W2260696579 creator A5076173089 @default.
- W2260696579 date "2016-04-01" @default.
- W2260696579 modified "2023-10-12" @default.
- W2260696579 title "Genre-Adaptive Semantic Computing and Audio-Based Modelling for Music Mood Annotation" @default.
- W2260696579 cites W13350936 @default.
- W2260696579 cites W1576667197 @default.
- W2260696579 cites W1966797434 @default.
- W2260696579 cites W1976188280 @default.
- W2260696579 cites W1979955134 @default.
- W2260696579 cites W1983507146 @default.
- W2260696579 cites W1997898747 @default.
- W2260696579 cites W2011853905 @default.
- W2260696579 cites W2016136491 @default.
- W2260696579 cites W2018275543 @default.
- W2260696579 cites W2023736093 @default.
- W2260696579 cites W2026844232 @default.
- W2260696579 cites W2034371412 @default.
- W2260696579 cites W2042266440 @default.
- W2260696579 cites W2051224630 @default.
- W2260696579 cites W2056507581 @default.
- W2260696579 cites W2065261119 @default.
- W2260696579 cites W2067329295 @default.
- W2260696579 cites W2087407704 @default.
- W2260696579 cites W2089705003 @default.
- W2260696579 cites W2092804630 @default.
- W2260696579 cites W2101151533 @default.
- W2260696579 cites W2102775690 @default.
- W2260696579 cites W2108672713 @default.
- W2260696579 cites W2115568835 @default.
- W2260696579 cites W2116373735 @default.
- W2260696579 cites W2126863010 @default.
- W2260696579 cites W2127194932 @default.
- W2260696579 cites W2133824856 @default.
- W2260696579 cites W2144383041 @default.
- W2260696579 cites W2147152072 @default.
- W2260696579 cites W2148600927 @default.
- W2260696579 cites W2149628368 @default.
- W2260696579 cites W2153631221 @default.
- W2260696579 cites W2153635508 @default.
- W2260696579 cites W2153719147 @default.
- W2260696579 cites W2159561775 @default.
- W2260696579 cites W2164480306 @default.
- W2260696579 cites W2171848217 @default.
- W2260696579 cites W3100472103 @default.
- W2260696579 cites W4210806553 @default.
- W2260696579 cites W4212883601 @default.
- W2260696579 cites W4241492945 @default.
- W2260696579 cites W4255916246 @default.
- W2260696579 cites W4292478130 @default.
- W2260696579 doi "https://doi.org/10.1109/taffc.2015.2462841" @default.
- W2260696579 hasPublicationYear "2016" @default.
- W2260696579 type Work @default.
- W2260696579 sameAs 2260696579 @default.
- W2260696579 citedByCount "26" @default.
- W2260696579 countsByYear W22606965792016 @default.
- W2260696579 countsByYear W22606965792017 @default.
- W2260696579 countsByYear W22606965792018 @default.
- W2260696579 countsByYear W22606965792019 @default.
- W2260696579 countsByYear W22606965792020 @default.
- W2260696579 countsByYear W22606965792021 @default.
- W2260696579 countsByYear W22606965792022 @default.
- W2260696579 countsByYear W22606965792023 @default.
- W2260696579 crossrefType "journal-article" @default.
- W2260696579 hasAuthorship W2260696579A5032485940 @default.
- W2260696579 hasAuthorship W2260696579A5032798767 @default.
- W2260696579 hasAuthorship W2260696579A5039535349 @default.
- W2260696579 hasAuthorship W2260696579A5041892847 @default.
- W2260696579 hasAuthorship W2260696579A5074494743 @default.
- W2260696579 hasAuthorship W2260696579A5076173089 @default.
- W2260696579 hasBestOaLocation W22606965792 @default.
- W2260696579 hasConcept C118552586 @default.
- W2260696579 hasConcept C121332964 @default.
- W2260696579 hasConcept C154945302 @default.
- W2260696579 hasConcept C15744967 @default.
- W2260696579 hasConcept C168900304 @default.
- W2260696579 hasConcept C169760540 @default.
- W2260696579 hasConcept C204321447 @default.
- W2260696579 hasConcept C2780733359 @default.
- W2260696579 hasConcept C28490314 @default.
- W2260696579 hasConcept C36951298 @default.
- W2260696579 hasConcept C41008148 @default.
- W2260696579 hasConcept C62520636 @default.
- W2260696579 hasConcept C6438553 @default.
- W2260696579 hasConceptScore W2260696579C118552586 @default.
- W2260696579 hasConceptScore W2260696579C121332964 @default.
- W2260696579 hasConceptScore W2260696579C154945302 @default.
- W2260696579 hasConceptScore W2260696579C15744967 @default.
- W2260696579 hasConceptScore W2260696579C168900304 @default.
- W2260696579 hasConceptScore W2260696579C169760540 @default.
- W2260696579 hasConceptScore W2260696579C204321447 @default.
- W2260696579 hasConceptScore W2260696579C2780733359 @default.